簡易檢索 / 詳目顯示

研究生: 蘇侯安
HOU-AN SU
論文名稱: 利用CMOS與微機電製程製作含金屬網格濾波器之遠紅外線熱輻射發光元件
Fabrication of Far Infrared Thermal Emitters with Metal Meshed Filters by CMOS and MEMS Processes
指導教授: 李三良
San-Liang Lee
口試委員: 黃柏仁
Bohr-Ran Huang
蘇忠傑
Jung-Chieh Su
李三良
San-Liang Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 69
中文關鍵詞: 遠紅外線熱輻射發射器微機電製程CMOS製程金屬網格濾波器
外文關鍵詞: Far infrared, Thermal emitter, MEMS process, CMOS process, Metal meshed filters
相關次數: 點閱:270下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在改善先前製作的遠紅外線熱輻射發光元件的效能,採用類似的設計概念,但改變部分元件結構,分別利用0.18-μm標準CMOS製程與優化微機電製程,藉此得到較高的發光功率與波長的選擇性。
    利用標準CMOS製程製作的晶片,為了增加發光功率,改變元件中加熱層的結構,並重新設計金屬網隔濾波器的參數,將元件大小由先前的1.635×1.85 mm2增加為2.236×2.236 mm2。為了改善先前晶片中,因為元件間共用基板的熱傳導,使熱能散失到其他元件導致發光效能不佳的問題,我們利用晶圓廠提供之MEMS後製程技術,將加熱層底下之基板挖空,以利隔絕並侷限住熱能。另外,較大幅度更動金屬網格結構的週期,並設計出雙層的濾波結構來比較濾波效果。而以微機電製程製作的晶片,並未更動元件結構,主要改善製程控制已獲得較佳的元件特性。
    經過量測製成的元件,下線之晶片在3V偏壓下可達到7.81m W⁄〖cm〗^2 的功率密度,微機電製程元件在5V的偏壓下可達到7.86 m W⁄〖cm〗^2 的功率密度,發光總功率可達到0.699 mW。經由FTIR量測之下,兩種製程之元件在頻譜中波峰的位置並未隨金屬網格參數變化有明顯的改變,需做更深入探討以釐清濾波器結構對光譜成份的影響。


    In order to improve the performance of the far infrared (FIR) thermal emitters, similar design concept in the prior work are adopted but the device structures and fabrication are investigated to obtain better power conversion efficiency and wavelength selectivity. Both 0.18-μm standard CMOS process and MEMS process with thick poly-silicon heating layer are used to fabricate the FIR light sources.
    For FIR emitters on the standard CMOS platform, the area of heating layer is increased from 1.635×1.85 mm2 to 2.236×2.236 mm2. To solve the problem of heat spreading to other devices from the substrate, a back-end MEMS process is utilized to remove the substrate under the heating layer. This can isolate the heating layer and thus improve the heating efficiency. The period of the metal meshed filer is varied to a larger extent and the filter structures with double metal layers are also designed to investigate the filtering characteristics. For FIR emitters on MEMS process with thick poly-silicon layer, the design remains the same as that in the prior work but better fabrication control is pursued to obtain improved device performance.
    The output power density of the CMOS devices can achieve 7.81m W⁄〖cm〗^2 at 3-V bias; and that of the MEMS-processed devices can also reach 7.86 m W⁄〖cm〗^2 when the input voltage is 5 V with an output power of 0.699mW. The spectrum measured by the FITR for both types of devices indicates no significant change in the center wavelength by varying the parameters of the metal meshed filters. This needs further investigation to clarify the filtering effect of the metal meshed filters.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 研究動機與元件技術介紹 1 1-1 前言 1 1-2 研究動機 1 1-3 元件上之光學濾波器 1 1-4 黑體輻射簡介 2 1-5 表面電漿子之原理介紹 3 1-6 研究方法 4 1-7 論文架構 4 第二章 元件之設計與模擬 5 2-1 標準CMOS製程之電路設計 5 2-1-1 標準CMOS架構介紹 5 2-2 模擬軟體簡介 7 2-2-1 十字架型金屬孔洞濾波模擬 7 2-3 表面電漿模態與週期性孔洞之物理機制 11 2-4 元件大小設計 13 2-4-1 標準CMOS製程晶片尺寸設計 13 2-4-2 微機電製程之元件尺寸設計 16 第三章 以微機電製程實現FIR元件 17 3-1 前次晶片之光罩設計 18 3-2 製程流程 19 3-3 製程結果討論 26 3-3-1 電極區域製作 27 3-3-2 光子晶體結構製作 28 第四章 元件特性量測 31 4-1標準CMOS製程晶片量測 31 4-1-1 元件輸出之紅外光波長量測 32 4-1-2 元件之發光功率量測 37 4-1-3 溫度分布量測 42 4-2 微機電製程晶片量測結果 45 4-2-1 元件之發光功率量測 45 第五章 結論 53 5-1 成果與討論 53 5-2 未來研究方向 55 參考文獻 56

    [1] Woolard, D. L., Brown, R., Pepper, M., & Kemp, M. (2005). “Terahertz frequency sensing and imaging: A time of reckoning future applications?.” Proceedings of the IEEE, 93(10), 1722-1743.
    [2] San, H., Li, C., Chen, X., Chen, R., & Zhang, Q. (2013). “Silicon-based micro-machined infrared emitters with a micro-bridge and a self-heating membrane structure.” IEEE Photon. Technol. Lett., 25(11), 1014-1016.
    [3] 謝鸚爗, 林招膨, 劉威忠, 林群智, "遠紅外線在醫學上之應用及其作用機制," 台灣應用輻射與同位素雜誌, vol. 3, pp.333-340, 2007 .
    [4] 李湘琳, "探討遠紅外線於穴位照射對血液透析病患貧血之影響," 碩士論文, 國立台北護理健康大學, 2014.
    [5] Melo, A. M., Gobbi, A. L., Piazzetta, M. H., & Da Silva, A. M. (2012). “Cross-shaped terahertz metal mesh filters: Historical review and results.” Advances in Optical Technologies, 2012.
    [6] Paul, K. E., Zhu, C., Love, J. C., & Whitesides, G. M. (2001). “Fabrication of mid-infrared frequency-selective surfaces by soft lithography.” Applied optics, 40(25), 4557-4561.
    [7] Shelton, D. J., Ginn, J. C., & Boreman, G. D. (2007, June). “Bandwidth variations in conformal infrared frequency selective surfaces.” In Antennas and Propagation Society International Symposium, 2007 IEEE (pp. 3976-3979). IEEE.
    [8] Konz, W., Hildenbrand, J., Bauersfeld, M., Hartwig, S., Lambrecht, A., Lehmann, V., & Wollenstein, J. (2005, January). “Micromachined IR-source with excellent blackbody like behaviour.” In Proc. of SPIE Vol (Vol. 5836, p. 541).
    [9] Udagawa, Y., Ishigame, H., & Nagasawa, H. (2002). “Effects of hydroxyapatite in combination with far-infrared rays on spontaneous mammary tumorigenesis in SHN mice.” The American journal of Chinese medicine, 30(04), 495-505.
    [10] Dong, S., Li, N., Chen, S., Liu, X., & Lu, W. (2012). “Impact ionization in quantum well infrared photodetectors with different number of periods.” Journal of Applied Physics, 111(3), 034504.
    [11] 邱國斌, 蔡定平, "金屬表面電漿簡介," 物理雙月刊, vol. 28.2, pp.472-485, 2006.
    [12] 吳民耀, 劉威志, “表面電漿子理論與模擬,” 物理雙月刊, vol. 28, no. 2, pp.486-496, Apr 2006.
    [13] Li, F., San, H., Li, C., Li, Y., & Chen, X. (2011). “MEMS-based plasmon infrared emitter with hexagonal hole arrays perforated in the Al-SiO2-Si structure.” Journal of Micromechanics and Microengineering, 21(10), 105023.
    [14] Puscasu, I., Pralle, M., McNeal, M., Daly, J., Greenwald, A., Johnson, E., ... & Ding, C. G. (2005). “Extraordinary emission from two-dimensional plasmonic-photonic crystals.” Journal of applied physics, 98(1), 013531.
    [15] 賴威良, “遠紅外線表面電漿子元件之研究,” 碩士論文, 國立交通大學, 2009.
    [16] 郭紀葳, “設計與製作紅外光熱輻射發光元件,” 碩士論文, 國立台灣科技大學, 2015.
    [17] 劉映廷, “利用標準CMOS製程及微機電製程製作紅外光熱輻射發光元件,” 碩士論文, 國立台灣科技大學, 2016
    [18] Hwang, W. J., Shin, K. S., Roh, J. H., Lee, D. S., & Choa, S. H. (2011). “Development of micro-heaters with optimized temperature compensation design for gas sensors.” Sensors, 11(3), 2580-2591.
    [19] Ott, T., Schossig, M., Norkus, V., & Gerlach, G. (2015). “Efficient thermal infrared emitter with high radiant power.” Journal of Sensors and Sensor Systems, 4(2), 313.

    QR CODE