簡易檢索 / 詳目顯示

研究生: 黃棋鴻
Chi-Hung Huang
論文名稱: 矽光波導元件之設計與改良
Design and Improvement of Silicon Optical Waveguide Components
指導教授: 李三良
San-Liang Lee 
口試委員: 蘇忠傑
Jung-Chieh Su
洪勇智
Yung-Jr Hung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 77
中文關鍵詞: 矽光子絕緣層覆矽金氧半製程光濾波器光波導
外文關鍵詞: Silicon photonics, SOI, CMOS process, optical filter, optical waveguide
相關次數: 點閱:352下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文參考本實驗室過往設計,針對以絕緣層覆矽基板及標準互補式金氧半製程平台實現的矽光子波導元件進行優化設計,將首先介紹波導的模擬分析方法、不同情形下的模態特性,並逐步展示各式積體化光學元件的設計優化過程,包括多種光濾波器與多工器、次波長光波導以及光柵耦合器等。為了搭配不同製程平台的設計規則,也探討不同結構下光學波導之表現。
    此論文首次展示以半導體晶圓廠標準二十八奈米互補式金氧半製程設計的光波導元件,在不變動任何製程參數下,使用多晶矽層製作光學波導。由於此製程的多晶矽層極薄,作為光波導的侷限因子很低,擬藉此探討此特殊波導的特性,並同時可降低多晶矽層造成的光學損耗。但由於實際下線製作的光柵耦合器的週期實際為原先設計的二倍,造成量測上的困難,藉由理論計算及模擬結果顯示其最佳耦合角度,透過調整耦合角度可將光耦入波導,獲得部分量測結果,可供後續優化設計參考。


    Based on the prior work developed in our group, this thesis presents the improved design of the silicon photonic components realized with both silicon on insulator (SOI) and standard bulk CMOS platforms. The simulation methods for investigating the mode evolution and performance of photonic integrated circuits (PICs) will be introduced. The design process leads to the improvement of the devices on silicon-on-insulator (SOI) platforms including optical filters based on Mach-Zehnder interferometers and sub-wavelength gratings, as well as the grating coupler, ring resonators, and sub-wavelength grating waveguide on the standard 28-nm CMOS platform. The design rules for each platform are adopted in the design processes.
    The design of optical waveguide devices using the standard 28-nm CMOS process provided by a semiconductor foundry is demonstrated for the first time in this work. The optical waveguide is fabricated using the thin polysilicon layer in the CMOS process without modifying any standard process conditions. Because of the very thin waveguide layer, the motivations here are to investigate the performance of waveguides with very-low confinement factor and to reduce the optical loss of the polysilicon layer. However, the pitch of the grating coupler in the layout is actually twice the original design value. This causes the difficulty in device characterization. We verify the grating design and correct the angle for fiber coupling. Preliminary results are obtained for subsequent design and optimization.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 IX 第一章 緒論 1-1 前言 1-2 研究動機 1-3 文獻回顧 1-4 絕緣層覆矽平台 1-5 標準互補式金氧半平台 1-6 論文架構 第二章 基本原理 2-1 波導結構介紹 2-2 方向耦合器 2-3 馬赫-曾德爾干涉儀 2-4 環形共振器 2-5 光柵耦合器 2-6 模擬方法介紹 2-6-1 有限時域差分法 2-6-2 有限特徵模態法 第三章 絕緣層覆矽平台之元件設計改良 3-1 光濾波器 3-2 八通道分波多工器 3-3 級聯式馬赫-曾德爾干涉儀濾波器 3-4 光柵耦合器 第四章 標準CMOS製程設計光學波導 4-1 光學波導 4-2 全蝕刻光柵耦合器 4-3 多模干涉耦合器 4-4 類脊狀波導 4-5 元件量測結果 第五章 結論與未來發展方向 5-1 成果與討論 5-2 未來發展方向 參考文獻

    [1]B. Jalali, and S. Fathpour, “Silicon Photonics,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4600-4615, 2006.
    [2]S. Lischke, D. Knoll, L. Zimmermann, P. Rito, A. C. Ulusoy, A. Awny, D. Petousi, I. G. Lopez, C. Mai, M. Kroh, B. Heinemann, H. Rücker, R. Barth, J. Katzer, M. A. Schubert, M. Kaynak, and A. Mai, "Photonic BiCMOS technology ; Enabler for Si-based, monolithically integrated transceivers towards 400 Gbps." pp. 456-459.
    [3]M. Streshinsky, R. Ding, Y. Liu, A. Novack, C. Galland, A. E. J. Lim, P. Guo-Qiang Lo, T. Baehr-Jones, and M. Hochberg, “The Road to Affordable, Large-Scale Silicon Photonics,” Optics and Photonics News, vol. 24, no. 9, pp. 32-39, 2013/09/01, 2013.
    [4]P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics, vol. 3, no. 4-5, 2014.
    [5]W. Bogaerts, M. Fiers, and P. Dumon, “Design Challenges in Silicon Photonics,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, pp. 1-8, 2014.
    [6]林政傑, “以矽光子平台實現可調光交織器,” 國立台灣科技大學碩士論文, 2016.
    [7]P. Tomas, “8-channel Integrated LAN-WDM Demultiplexers with Novel Design of Grating Assisted Couplers,” 國立台灣科技大學碩士論文, 2016.
    [8]Intel, “Intel® Silicon Photonics 100G PSM4 Optical Transceiver Brief,” https://www.intel.com/content/www/us/en/architecture-and-technology/silicon-photonics/optical-transceiver-100g-psm4-qsfp28-brief.html.
    [9]S. Lischke, D. Knoll, L. Zimmermann, P. Rito, A. C. Ulusoy, A. Awny, D. Petousi, I. G. Lopez, C. Mai, M. Kroh, B. Heinemann, H. Rücker, R. Barth, J. Katzer, M. A. Schubert, M. Kaynak, and A. Mai, “Photonic BiCMOS technology enabler for Si-based, monolithically integrated transceivers towards 400 Gbps,” pp. 456-459, 2016.
    [10]N. Sherwood-Droz, and M. Lipson, “Multi-layer low-temperature deposited CMOS photonics for microelectronics backend integration,” OSA CLEO 2011, paper CFB2, 2011.
    [11]D. Liang, and J. Bowers, “Recent progress in lasers on silicon,” Nature Photonics4, 511-517, 2010.
    [12]L. Coldren, G. Fish, Y. Akulova, J. Barton, L. Johansson, and C. Coldren, “Tunable semiconductor lasers: a tutorial,” IEEE Journal of Lightwave Technology, vol. 22, no. 1, pp.193-202, Jan, 2004.
    [13]K. Ikeda, Y. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Optic Express , vol. 15, no. 26, pp. 17761-17771, 2008.
    [14]H. Yu, D. Korn, M. Pantouvaki, J. Campenhout, K. Komorowska, P. Verheyen, G. Lepage, P. Absil, D. Hillerkuss, L. Alloatti, J. Leuthold, R. Baets, and W. Bogaerts, “Using carrier-depletion silicon modulators for optical power monitoring,” Optic Express , vol. 37, no. 22, pp. 4681-4683, 2012.
    [15]M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Optics Express, vol. 19, no. 4, pp. 3592-3598, 2011/02/14, 2011.
    [16]Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Optics Express, vol. 21, no. 24, pp. 29374-29382, 2013/12/02, 2013.
    [17]A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Optics Express, vol. 16, no. 16, pp. 12084-12089, 2008/08/04, 2008.
    [18]V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt Express, vol. 22, no. 17, pp. 21037-50, Aug 25, 2014.
    [19]C. Gunn, “CMOS photonics for high-speed interconnects,”IEEE Micro26, 58-66 (2006).
    [20]J. S. Orcutt, et al., “Nanophotonic integration in state-of-the-art CMOS foundries,” Opt. Express15, 2335-2346 (2011).
    [21]M. Georgas, J. Orcutt, R. J. Ram, and V. Stojanovic, “A Monolithically-Integrated Optical Receiver in Standard 45-nm SOI,” IEEE Journal of Solid-State Circuits, vol. 47, no. 7, pp. 1693-1702, 2012.
    [22]Christopher R. Doerr, and Herwig Kogelnik, “Dielectric Waveguide Theory,” IEEE Journal of Lightwave Technology, vol. 26, no. 9, pp. 1176-1187, May 1, 2008.
    [23]E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” The Bell System Technical Journal, vol. 48, no. 7, pp. 2071-2102, 1969.
    [24]J. Yu, Y. Du, Y. Xiao, H. Li, Y. Zhai, J. Zhang, and Z. Chen, “High performance micro-fiber coupler-based polarizer and band-rejection filter,” Optics Express, vol. 20, no. 15, pp. 17258, 2012.
    [25]M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Optics Letters, vol. 38, no. 5, pp. 733-735, 2013/03/01, 2013.
    [26]C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaitre, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat Commun, vol. 5, pp. 3278, 2014.
    [27]X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization,” Optics Express, vol. 21, no. 4, pp. 4116-4125, 2013/02/25, 2013.
    [28]H. Shen, M. H. Khan, L. Fan, L. Zhao, Y. Xuan, J. Ouyang, L.T. Varghese, and M. Qi, “Eight-channel reconfigurable microring filters with tunable frequency, extinction ratio and bandwidth,” Optics Letters, vol. 18, no. 17, pp. 18067-18076, 2010/08/16, 2010.
    [29]R. Ding, Y. Liu, Q. Li, Z. Xuan, Y. Ma, Y. Yang, A. E. J. Lim, G. Q. Lo, K. Bergman, T. Baehr-Jones, and M. Hochberg, “A Compact Low-Power 320-Gb/s WDM Transmitter Based on Silicon Microrings,” IEEE Photonics Journal, vol. 6, no. 3, pp. 1-8, 2014.
    [30]G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H.K.Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Optic Express, vol. 18, no. 21, pp. 22215-22221, 2010.
    [31]H.-L. Tseng, C.-W. Tseng, E.Chen, and N. Na, “A high-performance SOI grating coupler with completely vertical emission,” SPIE Proceedings of Silicon Photonics IX, vol. 8990, paper 899007, SanFrancisco, California, USA, April 8 2014.
    [32]G. Roelkens, D. Van Thourhout, and R. Baets, “SOI grating structure for perfectly vertical fiber coupling,” European Conference on Integrated Optics (ECIO) FC4, 2007.
    [33]Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, and N. A. F. Jaegar, “Fully etched grating coupler with low back reflection,” SPIE Proceedings of Photonics North 2013, vol. 8915, paper 89150U, Ottwa, Canada, June 3-5 2013.
    [34]D. Taillaert, F. Van Laere, M. Ayre, W.Bogaerts, D.Van Thourhout, and P. Bienstman, “Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides,” Japanese Journal of Applied Physics, vol. 45,pp. 6071-6077, 2006.
    [35]I. Lumerical Solutions. https://www.lumerical.com/.
    [36]Y. Kane, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966.
    [37]Z. Zhu, and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Optics Express, vol. 10, no. 17, pp. 853-864, 2002/08/26, 2002.
    [38]X. Zheng, I. Shubin, G. Li, Y. Luo, N. Park, J. Yao, H. Thacker, J.-H. Lee, K. Raj, J. Cunningham, and A. Krishnamoorthy, “1×8 Si ring Mux/DeMux with ultra-low tuning power,” 10th International Conference on Group IV Photonics, October, 2013.
    [39]H. Okayama, “Sub 100 μm Size Polarization Independent WDM Wavelength Filters using Si Waveguide,” OECC 2010 Technical Digest, July 5, 2010.
    [40]Y. Hu, F. Y. Gardes, D. J. Thomson, G. Z. Mashanovich, G. T. Reed, “Interleaved Angled MMI CWDM Structure on the SOI Platform,” International Conference on Group IV Photonics, Aug 28, 2013.
    [41]A. Bois, A. D. Simard, W. Shi, and S. LaRochelle, “Design of a Polarization-Insensitive WDM Demultiplexing Lattice Filter in SOI,” Conference on Lasers and Electro-Optics (CLEO), May 10, 2015.
    [42]C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE Journal on Selected Areas in Communications, vol. 8, no. 6, pp. 948-964, 1990.
    [43]S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, “Interleaver Technology: Comparisons and Applications Requirements,” Journal of Lightwave Technology, vol. 22, no. 1, pp. 281-289, 2004.
    [44]P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delage, S. Janz, G. C. Aers, D.-X. Xu, A. Densmore, and T. J. Hall, “Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide,” Opt Express, vol. 18, no. 19, pp. 20251-20262, Sept, 2010.
    [45]P. Yeh, and H. F. Taylor, “Contradirectional frequency-selective couplers for guided-wave optics,” Opt, vol. 19, pp. 2848-2855, Aug, 1980.
    [46]T. Paatzsch, I. Smaglinski, and S. Kr¨uger, "Compact Optical Multiplexers for LAN WDM," IEEE 802.3ba Task Force, July, 2008.
    [47]F. Horst, W. M. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt Express, vol. 21, no. 10, pp. 11652-8, May 20, 2013.

    QR CODE