簡易檢索 / 詳目顯示

研究生: 郭紀葳
Chi-Wei Kuo
論文名稱: 設計與製作紅外光熱輻射發光元件
Design and Fabrication of Infrared Thermal Emitter
指導教授: 李三良
San-Liang Lee
口試委員: 徐世祥
Shih-Hsiang Hsu
葉秉慧
Pinghui Sophia Yeh
洪勇智
Yung-Jr Hung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 79
中文關鍵詞: 紅外線表面電漿效應光子晶體
外文關鍵詞: infrared, surface plasmon, photonic crystal
相關次數: 點閱:297下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了應用於紅外光醫療,本論文欲製作波長位置在4~12 μm波段之紅外光熱輻射光源,為了達到濾波以及控制波長位置的目的,本論文利用金屬/介電質之間電場分量不連續所產生之表面電漿效應,並結合光子晶體結構,使得光具有方向性,有助於光耦合至表面電漿模態,達到濾波以及選擇波長之效果。本論文使用SOI基板,以實現元件之電阻加熱及相關微結構,並用軟體模擬材料以及孔洞週期結構變化對於發光波長之影響,設計出波長位置在7.2 μm、9.2 μm、11.2 μm之發光元件結構。並藉由離子擴散的方式增加元件之導電率,設計元件之長寬比,分別為3.8×1.7 mm2、4.8×1.7 mm2、5.8×1.7 mm2的元件,經計算及四點探針測量後其電阻值分別約為116 Ω、92 Ω、76 Ω,其加熱溫度經熱電偶量測均可到達240 ℃以上,發光功率經紅外光檢光器量測可達1.13 mW,而波長變化情形,我們利用FTIR 之量測結果可以發現在不同孔洞週期下,量測波長也會隨之改變,本論文中之量測波長可從7.4 μm變化到8.3 μm,由此可以證實不同孔洞週期會改變發光波長。


    For the applications in infrared therapy, this thesis focuses on
    developing infrared thermal emitter devices, whose wavelength ranges
    from 4~12 μm. In order to select and control wavelength, we utilize the
    surface plasma induced by abrupt junction between a metal layer and a
    dielectric layer. Photonic crystals are also adopted to make light output
    directive, and enhance the surface plasmonic effect. After simulating the
    effect on wavelength by varying the material and hole period, we design
    emitters whose wavelengths are 7.2 μm, 9.2 μm, 11.2 μm, respectively.
    We fabricate the thermal emitters on a SOI substrate that is favorable
    for realizing the heating elements and simplifying the related process.
    The top silicon layer of the SOI wafer is undoped, so ion diffusion is
    carried out to increase the conductivity. The measured resistance by four
    point probe for device sizes of 3.8×1.7 mm2 , 4.8×1.7 mm2 , and
    5.8×1.7 mm2 is 116 Ω, 92 Ω, and 76 Ω, respectively. The surface
    temperature measured by thermocouple can be up to 240 ℃ and the
    emitted power measured by infrared photodiode can reach 1.13 mW. The
    emitted light spectrum is measured with FTIR. The wavelength can
    change with the hole period, from 7.2 μm to 8.3 μm. Therefore, we
    successfully realized the infrared emitters of which the wavelength can be
    controlled by the hole period of the photonic crystals.

    摘要................................................................................................................................. i Abstract .......................................................................................................................... ii 致謝.............................................................................................................................. iii 目錄............................................................................................................................... iv 圖目錄........................................................................................................................... vi 表目錄........................................................................................................................ viii 第一章 研究動機與元件技術介紹............................................................................ 1 1.1 前言 ..................................................................................................................... 1 1.2 遠紅外光在醫療方面的用途 ............................................................................. 3 1.3 黑體輻射簡介 ..................................................................................................... 5 1.3.1 Stefan-Boltzmann 定律 ............................................................................. 6 1.3.2 Wien’s displacement 定律 ...................................................................... 6 1.3.3 Planck’s 定律 ............................................................................................ 7 1.4 研究方向 ............................................................................................................. 8 1.5 論文架構 ............................................................................................................. 9 第二章 元件模擬與設計.......................................................................................... 10 2.1 表面電漿子原理以及探討 ................................................................................ 10 2.1.1 介電物質與金屬介面的表面電漿模態 .................................................... 11 2.2 光子晶體簡介 ................................................................................................... 15 2.2.1 光子晶體帶隙 ............................................................................................ 16 2.3 模擬軟體簡介 ................................................................................................... 19 2.4 元件幾何結構模擬 ........................................................................................... 19 2.4.1 光子晶體波長模擬 ..................................................................................... 20 2.4.2 光子晶體能隙模擬 ..................................................................................... 26 2.5 元件長度設計 ................................................................................................... 29 第三章 元件製程步驟.............................................................................................. 36 3.1 光罩設計 ........................................................................................................... 37 3.2 製程流程 ........................................................................................................... 38 3.3 製程結果與討論 ................................................................................................ 46 3.3.1 使用高溫爐管進行熱擴散與退火製程 ..................................................... 47 3.3.2 電子束蒸鍍機之電極金屬沉積 ................................................................. 48 3.3.3 曝光機定義金屬區與製作光子晶體結構 ................................................. 50 第四章 元件量測...................................................................................................... 56 4.1 元件溫度變化量測 ........................................................................................... 56 4.2 紅外光元件不同週期下其輸出波長量測 ....................................................... 58 4.3 紅外光發光元件光功率-電流-電壓量測 ......................................................... 64 第五章 結論.............................................................................................................. 72 5.1 成果與討論 ....................................................................................................... 72 5.2 未來研究方向 ................................................................................................... 74 參考文獻...................................................................................................................... 76

    [1] 謝鸚爗, 林招膨, 劉威忠, 林群智, "遠紅外線在醫學上之應用及
    其作用機制," 台灣應用輻射與同位素雜誌, vol. 3, pp.333-340,
    2007 .
    [2] 李湘琳, "探討遠紅外線於穴位照射對血液透析病患貧血之影
    響," 碩士論文, 國立台北護理健康大學, 2014.
    [3] M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee,
    "High performance midinfrared narrow-band plasmonic thermal
    emitter," Applied Physics Letters, vol. 89, pp. 173116(1)-(3), Oct
    2006.
    [4] H. S. San, X. Y. Chen, M. Y. Cheng, and F. Q. Li, "A silicon
    micromachined infrared emitter based on SOI wafer," SPIE
    Proceedings, vol. 6836, MEMS/MOEMS Technologies and
    Applications III, pp. 68360N(1)-(8), 2007.
    [5] Y. W. Jiang, Y. T. Wu, M. W. Tsai, P. E. Chang, D. C. Tzuang, and Y.
    H. Ye, "Characteristics of a waveguide mode in a trilayer
    Ag/SiO2/Au plasmonic thermal emitter," Optics Letters, vol. 34, pp.
    3089-3091, Oct 2009.
    [6] H. K. Fu, Y. W. Jiang, M. W. Tsai, S. C. Lee, and Y. F. Chen, "A
    thermal emitter with selective wavelength: Based on the coupling
    between photonic crystals and surface plasmon polaritons," Journal
    of Applied Physics, vol. 105, pp. 033505(1)-(5), Feb 2009.
    [7] C. Tei, Y. Horikiri, J. Park, J. Jeong, K. Chang, N. Tanaka, and Y.
    Toyama, "Effects of hot water bath or sauna on patients with
    congestive heart failure: acute hemodynamic improvement by
    thermal vasodilation," Journal of Cardiology, vol. 24.3, pp.175-183,
    1993.
    [8] M. Imamura, S. Biro, T. Kihara, S. Yoshifuku, K. Takasaki, and Y.
    Otsuji, "Repeated thermal therapy improves impaired vascular
    endothelial function in patients with coronary risk factors," Journal
    of the American College of Cardiology, vol. 38, pp. 1083-1088, Oct
    2001.
    [9] H. Toyokawa, Y. Matsui, J. Uhara, H. Tsuchiya, S. Teshima, and H.
    Nakanishi, "Promotive effects of far-infrared ray on full-thickness
    skin wound healing in rats," Experimental Biology and Medicine,
    vol. 228, pp. 724-729, Jun 2003.
    [10] A. Masuda, N. Nagai, T. Munemoto, T. Naruo, A. Inui, and C. Tei,
    "The effects of repeated thermal therapy for patients with chronic
    pain," Journal of Psychosomatic Research, vol. 58, pp. 288-294, Jun
    2005.
    [11] 程紹鈞, 王蕩, 張廣運, "紅外線輻射對糖尿病兔糖代謝調控的
    實驗性研究," 中華物理醫學與康復雜誌, vol. 22(3), pp.165-167,
    2000.
    [12] Y. Udagawa, H. Ishigame, and H. Nagasawa, "Effects of
    hydroxyapatite in combination with far-infrared rays onspontaneous mammary tumorigenesis in SHN mice," American
    Journal of Chinese Medicine, vol. 30, pp. 495-505, 2002.
    [13] W. Becker, R. Fettig, A. Gaymann, and W. Ruppel, "Black gold
    deposits as absorbers for far infrared radiation," Physica Status
    Solidi B-Basic Research, vol. 194, pp. 241-255, Mar 1996.
    [14] S. Dong, N. Li, S. H. Chen, X. H. Liu, and W. Lu, "Impact
    ionization in quantum well infrared photodetectors with different
    number of periods," Journal of Applied Physics, vol. 111, pp.
    034504(1)-(6), Feb 2012.
    [15] 鄒沛勳, "8×8 微橋結構陣列式紅外線感測元件之響應時間分析
    與研究," 碩士論文, 國立海洋大學, 2012.
    [16] 邱國斌, 蔡定平, "金屬表面電漿簡介," 物理雙月刊, vol. 28.2,
    pp.472-485, 2006.
    [17] 吳民耀, 劉威志, "表面電漿子理論與模擬" 物理雙月刊, vol.
    28.2, pp.486-496, 2006.
    [18] F. Q. Li, H. S. San, C. Z. Li, Y. Li, and X. Y. Chen, "MEMS-based
    plasmon infrared emitter with hexagonal hole arrays perforated in
    the Al-SiO2-Si structure," Journal of Micromechanics and
    Microengineering, vol. 21, pp. 105023(1)-(7), Oct 2011.
    [19] I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, and E.
    Johnson, "Extraordinary emission from two-dimensionalplasmonic-photonic crystals," Journal of Applied Physics, vol. 98,
    pp. 013531(1)-(6), Jul 2005.
    [20] 賴威良, "遠紅外線表面電漿子元件之研究," 碩士論文, 國立交
    通大學, 2009.
    [21] I. El-Kady, R. Biswas, Y. Ye, M.F. Su, I. Puscasu, M. Pralle, E.A.
    Johnson, J. Daly, and A. Greenwald, "Tunable narrow-band infrared
    emitters from hexagonal lattices." Photonics and
    Nanostructures-Fundamentals and Applications, vol. 1, pp.69-77,
    2003.
    [22] L. William, D. Alain, and W. E. Thomas, "Surface plasmon
    subwavelength optics." Nature, vol. 424, pp.824-830, 2003.
    [23] M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C.
    Greenwald, and J. T. Daly, "Photonic crystal enhanced narrow-band
    infrared emitters," Applied Physics Letters, vol. 81, pp. 4685-4687,
    Dec 2002.
    [24] R. Biswas, C. G. Ding, I. Puscasu, M. Pralle, M. McNeal, and J.
    Daly, "Theory of subwavelength hole arrays coupled with photonic
    crystals for extraordinary thermal emission," Physical Review B,
    vol. 74, pp. 045107(1)-(6), Jul 2006.
    [25] 欒丕綱, 陳昌, "光子晶體從蝴蝶翅膀到奈米光子學," 五南圖
    書出版公司, 2005.

    QR CODE