簡易檢索 / 詳目顯示

研究生: 高嘉駿
Chia-Chun Kao
論文名稱: 以IPD整合CMOS製程實現超穎物質自振式主動天線之晶片化研究
A Study of On-chip Metamaterial-Based Self-Oscillating Active Integrated Antenna by Using IPD integrated CMOS Process
指導教授: 馬自莊
Tzyh-Ghuang Ma
陳筱青
Hsiao-Chin Chen
口試委員: 馬自莊
Tzyh-Ghuang Ma
陳筱青
Hsiao-Chin Chen
廖文照
Wen-Jiao Liao
林坤佑
Kun-You Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 72
中文關鍵詞: 自振式主動集成天線超穎物質複合式左右手傳輸線零階共振器交錯耦合對CMOS 0.18 μm 1P6M製程整合被動元件製程IPD整合CMOS製程
外文關鍵詞: 0.18-μm CMOS technology, composite right/left handed transmission line, cross-coupled pair, integrated passive device (IPD) process, IPD integrated CMOS process, metamaterial, self-oscillating active antenna, zeroth-order resonator
相關次數: 點閱:438下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主旨,乃首次將超穎物質零階共振器自振式主動天線晶片化,以台積電CMOS 0.18 μm 1P6M製程實現主動天線之主動電路部分,並以矽基板整合被動元件製程實現天線本體,該設計將大幅縮小天線體積。
    本論文共提出兩款設計。首款零階共振器自振式主動天線,乃以零階共振器為天線輻射體,並利用交錯耦合對中,兩顆電晶體之閘、汲極間零相位之特性,滿足起振條件,使主動天線於共振器零階模態產生振盪,並將主動電路部分以台積電CMOS 0.18 μm 1P6M製程實現,大幅縮小主動電路體積,成功實現零階共振器自振式主動天線。
    其次,為實現零階共振器自振式主動天線晶片化,乃以前一款設計為基礎,以矽基板整合被動元件製程取代印刷電路板實現另一款零階共振器,並利用國家晶片系統設計中心(National Chip Implementation Center, CIC) 提供之覆晶技術(Flip chip)將主動電路晶片及天線輻射體晶片以Bumper連接,實現首款晶片化之零階共振器自振式主動天線,其微小體積使在使用中不會浪費過多空間,充滿彈性及機動性,目前晶片已在下線階段,待日後晶片製作完成便會進行量測。


    This study focuses on the novel on-chip metamaterial-based self-oscillating active integrated antenna (AIA) using zeroth-order resonator. The active circuit of AIA is performed by using 0.18-μm CMOS technology. Moreover, the antenna part is performed by using the integrated passive device (IPD) process.
    Two designs are researched and developed in this thesis. First of all, a novel self-oscillating AIA based on zeroth-order resonators is proposed. The connecting line between the gate and the other drain terminals in a cross-coupled pair is broken up to insert a zeroth-order resonator in between. By utilizing the zero-phase-shift property of a zeroth-order resonator, the phase of the feedback loop is zero and the oscillation happens. The oscillation parameters are investigated in details. The size of active circuit is drastically reduced by using 0.18-μm CMOS technology.
    Secondly, to achieve on-chip metamaterial-based self-oscillating active integrated antenna (AIA), the circuit layout of the previous case is re-investigated to develop another zeroth-order resonator. Different from the former design, in the latter case, the antenna part is performed by using integrated passive device (IPD) instead of PCB process. The first on-chip design of metamaterial-based self-oscillating AIA is by using flip chip technique of National Chip Implementation Center (CIC) to combine the integrated passive device (IPD) process with 0.18-μm CMOS process. The small size makes it full of flexibility and mobility. The chip is in the tape-out stage now, and it will be measured after it is totally completed in the future.

    摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻探討 2 1.3研究貢獻 4 1.4論文組織 5 第二章 以印刷電路板整合CMOS製程實現零階共振器自振式主動天線 6 2.1前言 6 2.2自振式主動天線設計流程 7 2.3交錯耦合對之超穎物質自振式主動天線 8 2.3.1交錯耦合對之振盪條件 8 2.3.2超穎物質共振器之原理 10 2.3.3零階共振器與交錯耦合對之結合 12 2.3.4超穎物質天線輻射體之設計 17 2.3.5超穎物質主動天線之設計 19 2.3.6超穎物質天線之色散響應 22 2.3.7模擬與量測結果 25 2.4結語 33 第三章 以IPD整合CMOS製程實現零階共振器自振式主動天線晶片 34 3.1前言 34 3.2矽基板整合被動元件製程之簡介 35 3.3交錯耦合對之超穎物質自振式主動天線 36 3.3.1超穎物質共振器之設計 36 3.3.2超穎物質天線輻射體之設計 38 3.3.3超穎物質主動天線之設計 42 3.3.4超穎物質天線之色散響應 45 3.3.5模擬結果 48 3.4 結語 53 第四章 結論 54 4.1 總結 54 4.2 未來發展 55 參考文獻 56

    [1] M. Zorzi, A. Gluhak, S. Lange and A. Bassi, “From today's intranet of things to a future internet of things: a wireless- and mobility-related view,” IEEE Wireless Communications, vol. 17, pp. 44–51, 2010.
    [2] M. Zhang, F. Sun and X. Cheng, “Architecture of internet of things and its key technology integration based-on RFID, ” in Proc. Int. Symp. on Computational Intelligence Design, pp. 294–297, 2012.
    [3] M.-H. Lee, C.-Y. Yao and H.-C. Liu, “Passive tag for multi-carrier RFID systems,” in Proc. IEEE 17th Int. Conf. on Parallel and Distributed Systems, pp. 872–876, 2011.
    [4] P. V. Nikitin, S. Ramamurthy, R. Martinez and K. V. S. Rao, “Passive tag-to-tag communication,” in Proc. IEEE Int. Conf. on RFID, pp. 177–184, 2012.
    [5] K. Chang, R. A. York, P. S. Hall and T. Itoh, “Active integrated antennas,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 3, pp. 937–944, Mar. 2002.
    [6] Y. Qian and T. Itoh, “Progress in active integrated antennas and their applications,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 11, pp. 1891–1900, Nov. 1998.
    [7] C. M. Montiel, L. Fan and K. Chang, “A novel active antenna with self-mixing and wideband varactor-tuning capabilities for communication and vehicle identification applications,” IEEE Trans. Microw. Theory Techn., vol. 44, no. 12, pp. 2421–2430, Dec. 1996.
    [8] C.-H. Tsai, Y. A. Yang, S.-J. Chung and K. Chang, “A novel amplifying antenna array using patch-antenna couplers-design and measurement,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 8, pp. 1919–1926, Aug. 2002.
    [9] W. Duerr, W. Menzel and H. Schumacher, “A low-noise active receiving antenna using a SiGe HBT,” IEEE Trans. Microw. Guide Wave Lett., vol. 7, no. 3, pp.63–65, Mar. 1997.
    [10] D. H. Choi and S. O. Park, “A varactor-tuned active-integrated antenna using slot antenna,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 191–193, 2005.
    [11] E. H. Lim and K. W. Leung, “Novel utilization of the dielectric resonator antenna as an oscillator load,” IEEE Trans. Antenna Propag., vol. 55, no. 10, pp. 2686–2691, 2007.
    [12] J. W. Andrews and P. S. Hall, “Phase-locked-loop control of active microstrip patch antennas,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 1, pp. 201–206, Jan. 2002.
    [13] M. Zheng, P. Gardener, P. S. Hall, Y. Hao, Q. Chen and V. F. Fusco, “Cavity control of active integrated antenna oscillators,” Proc. Inst. Elect. Eng. Microw. Antennas Propag., vol. 148, pp. 15–20, 2001.
    [14] K. Chang, K. A. Hummer and J. L. Klein, “Experiments on injection locking of active antenna elements for active phased arrays and spatial power combiners”, IEEE Trans. Microw. Theory Techn., vol. 37, no. 7, pp.1078-1084, July 1989.
    [15] K. H. Y. Ip and G. V. Eleftheriades, “A compact CPW-based single-layer injection-locked active antenna for array applications,” IEEE Trans. Microw. Theory Techn., vol. 50, no.2, pp. 481–486, Feb. 2002.
    [16] W. J. Tseng and S. J. Chung, “Analysis and application of a two-port aperture-coupled microstrip antenna,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 5, pp. 530–535, May 1998.
    [17] P. Liao and R. A. York, “A varactor tuned patch oscillator for active arrays,” IEEE Microw. Guided Wave Lett., vol. 4, no. 10, pp. 335–337, Oct. 1994.
    [18] C. H. Mueller, R. Q. Lee, R. R. Romanofsky, C. L. Kory, K. M. Lambert, F. W. V. Keuls and F.A.Miranda, “Small-size X-band active integrated antenna with feedback loop,” IEEE Trans. Antennas Propag., vol. 56, no. 5, pp. 1236–1241, May 2008.
    [19] Y.-Y. Lin, C.-H. Wu and T.-G. Ma, “Miniaturized self-oscillating annular ring active integrated antennas,” IEEE Trans. Antennas Propag.,vol. 59, no. 10, pp. 3597–3606, Oct. 2011.
    [20] C.-H. Wu and T.-G. Ma, “Self-oscillating dual-ring active integrated antenna” IEEE Int. Symp. on Antennas and Propagation Digest, 2011, pp. 2457-2460.
    [21] C.-H. Wu and T.-G. Ma, “Self-oscillating semi-ring active integrated antenna with frequency reconfigurability and voltage-controllability,” IEEE Trans. Antennas Propag, vol.61 ,no.7 , pp.3880-3885 , Jul. 2013.
    [22] A. Lai, C. Carloz and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34-50, Sep. 2004D. M. Pozar, Microwave Engineering, 3rd ed. Wiley, 2005.
    [23] G. V. Eleftheriades, “Enabling RF/microwave devices using negative refractive-index transmission-line (NRI-TL) metamaterials,” IEEE Antennas Propag. Mag., vol. 49, no. 2, pp. 34–51, Apr. 2007
    [24] C.-J. Lee, H. Wei, A. Gummalla and M. Achour, “Small antenna based on CRLH structures: Concept, design, application,” IEEE Antennas Propag. Mag., vol. 53, no. 2, pp. 10–25, Apr. 2011.
    [25] Y. Dong and T. Itoh, “Miniaturized substrate integrated waveguide slot antennas based on negative order resonance,” IEEE Trans. Antennas Propag., vol. 58, no. 12, pp. 3856–3864, 2010
    [26] M. A. Antoniades and G. V. Eleftheriades, “A folded-monopole model for electrically small NRI-TL metamaterial antennas,” IEEE Antennas Wireless Propag. Lett., vol. 7, pp. 425–428, Oct. 2008.
    [27] A. Sanada, C. Carloz and T. Itoh, “Novel zeroth-order resonator composite right/left handed transmission line resonators,” in IEEE Asia Pacific Conf., Seoul, Korea, pp. 1588–1591, Dec. 2003.
    [28] Z.-H. Liu, Y.-W. Chang and T.-G. Ma, “High-efficiency self-oscillating active integrated antenna using metamaterial resonators and its application to multicarrier radio frequency identification systems,” IEEE Trans. Antennas Propag, vol. 64, no. 9, pp. 3803–3810, Sep. 2016.
    [29] Y.-W. Chang and T.-G. Ma, “Zeroth-order self-oscillating active integrated antenna using cross-coupled pair,” IEEE Trans. Antennas Propag, vol.65, no.10, pp. 5011–5018, Nov. 2017.
    [30] T.-G. Ma, C.-W. Wang, C.-H. Lai and Y.-C. Tseng, Synthesized Transmission Lines: Design, Circuit Implementation, and Phased Array Applications, 1st ed. Singapore: Wiley, 2017, pp. 27–29
    [31] J. Kim, M. Nagatoshi and H. Morishita, “Study on miniaturization of a strip folded dipole antenna with two linear conductors,” in Proc. 5th Eur. Conf. Antennas Propag., pp. 342–345, 2011.
    [32] J. Chot and C. Seo, “Microstrip square open-loop multiple split ring resonator for low-phase-noise VCO,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 12, pp. 3245–3252, Dec 2008.

    QR CODE