簡易檢索 / 詳目顯示

研究生: 崔天萌
Tian-Meng Cui
論文名稱: 應用於毫米波雷達的超穎材料天線罩設計
Metamaterial Radome Design for Millimeter Wave Radars
指導教授: 楊成發
Chang-Fa Yang
口試委員: 楊成發
Chang-Fa Yang
馬自莊
Tzyh-Ghuang Ma
林文雄
Wen-Hsiung Lin
翟駿逸
Chun-Yi Chai
林健維
Ike Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 112
中文關鍵詞: 毫米波天線罩雷達超穎材料天線增益透鏡效應
外文關鍵詞: Millimeter Wave, Radome, Radar, Metamaterial, Antenna Gain, Lens Effect
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出三款毫米波雷達的超穎材料天線罩設計,其中前兩款為應用於英飛凌(Infineon)公司的60GHz 1T3R封裝天線(Antenna in Package)雷達模組,第一款為複合型超穎材料天線罩,由星形超穎材料和方形超穎材料組成,可提升雷達模組封裝天線 3dB以上的增益,增大雷達偵測距離,而第二款則由星形超穎材料設計而成,能夠在水平面上增大天線輻射場型主瓣寬度,使雷達的水平面涵蓋範圍更廣。至於第三款乃為線形超穎材料天線罩,應用於德州儀器(TI)公司的60GHz 3T4R雷達模組,可提升佐臻公司既有雷達模組串列式陣列天線2dB以上的增益,增大雷達偵測距離。本論文探討了超穎材料天線罩能夠提升天線增益之原理,其中星形與線形超穎材料在特定尺寸時可以提升天線之增益,當天線輻射的電磁波經過這兩種超穎材料會產生相位延遲,與未經過超穎材料之電磁波的相位差形成類似透鏡的效應,因此天線輻射的電磁波經過超穎材料後其波前可接近平面波,使天線輻射增益提高。本論文於天線與超穎材料天線罩架構進行了模擬與分析,並且實作驗證所設計之天線罩對天線增益與雷達模組偵測效能之影響。


    In this thesis, three metamaterial radome designs for millimeter wave radars are proposed. The first two of them are applied for the 60GHz 1T3R antenna package radar module from Infineon Company. One is the composite metamaterial radome, which is composed of the star and square structures. There is a gain enhancement of more than 3dB to increase the detection distance of the radar. The other metamaterial radome is designed by the star structure, which can increase the width of the main lobe of the antenna radiation fields on the horizontal plane, so that the horizontal coverage of the radar can be enhanced. The third metamaterial radome is consisted of the linear metamaterials to be applied to Texas Instruments (TI) 60GHz 3T4R radar module. This radome design may improve the gain of the current series antenna array for the radar module of Jorjin Company more than 2dB to increase the radar detection range. This thesis studies how metamaterial radome can enhance antenna gain, where star and linear structures in specific sizes may have better performance. The radiation of the electromagnetic waves through the metamaterials has an additional phase delay, and cause the phase difference with that without passing through the metamaterial radome to form a lens effect. Therefore, the wavefront of the antenna radiating waves passing through the metamaterials can approach that of the plane wave, so that the radiation gain of the antenna can be improved. In this thesis, the antenna and metamaterial radome structures are simulated and analyzed. The effects of the radome on the antenna gain and detection level of the radar module are further verified by measuring the radar module with the proposed metamaterial radome.

    摘要............................................................................I ABSTRACT ......................................................................II 誌謝...........................................................................IV 圖目錄.......................................................................VIII 表目錄........................................................................XIV 第一章 緒論 1 1.1 研究背景與動機..............................................................1 1.2 論文組織....................................................................3 第二章 應用於毫米波雷達封裝天線的超穎材料天線罩設計....................................4 2.1 前言........................................................................4 2.2 超穎材料天線罩設計原理與結構................................................5 2.2.1 星形超穎材料單元結構與模擬結果分析........................................5 2.2.2方形超穎材料單元結構與模擬結果分析.........................................8 2.2.3 單支貼片天線 與超穎材料天線罩模擬結果與原理分析..........................12 2.3 超穎材料與介質基板比較.....................................................24 2.4封裝天線與超穎材料天線罩模擬結果............................................27 2.4.1改善封裝天線結合超 穎材料天線罩之場型偏移問題.............................29 2.4.2封裝天線與提高增益之超穎材料天線罩模擬結果................................38 2.4.3增大封裝天線輻射角度之超穎材料天線罩設計..................................51 2.5量測結果與討論............................................................. 55 2.6小結....................................................................... 63 第三章 應用於毫米波串列式天線的超穎材料天線罩設計.....................................64 3.1 前言 ..................................................................... 64 3.2 超穎材料天線罩設計原理與結構 ............................................. 64 3.3 毫米波串列式天線與超穎材料天線罩模擬結果 ................................. 68 3.3.1 單支串列式天線與超穎材料天線罩模擬結果...................................68 3.3.2 毫米波串列式天線與超穎材料天線罩模擬結果.................................78 3.4量測結果與討論............................................................. 85 3.5小結...................................................................... 108 第四章 結論..........................................................................109 參考文獻......................................................................111

    [1] Tie Jun Cui, David R Smith and Ruopeng Liu, Metamaterial Theory, Design and Applications, 2010, ISBN 978-1-4419-0573-4
    [2] Viktor G Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp. 10, 509(1968)
    [3] Pendry, J.B., Holden, A.J., Srewart, W.J., Youngs, I., “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776(1996)
    [4] Pendry, J.B., Holden, A.J., Robbins, D.J., Srewart, W.J., “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Micro. Theory Tech.47, 2075-2084(1999)
    [5] Shelby, R.A., Smith, D.R., Schultz, S., “Experimental verification of a negative index of refraction,” Science 292, 77-79(2001)
    [6] Zouhdi, Saïd, Ari Sihvola, Alexey P. Vinogradov, “Metamaterials and Plasmonics: Fundamentals, Modelling, Applications,” New York: Springer-Verlag. December 2008: 3–10, Chap. 3, 106. ISBN 978-1-4020-9406-4.
    [7] Yuejun Zheng et al, “Wideband Gain Enhancement and RCS Reduction of Fabry–Perot Resonator Antenna with Chessboard Arranged Metamaterial Superstrate,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 2, pp. 590-599, February 2018
    [8] Amit K. Singh, Mahesh P. Abegaonkar, and Shiban K. Koul, “Wide Angle Beam Steerable High Gain Flat Top Beam Antenna Using Graded Index Metasurface Lens”, IEEE Transactions on Antennas and Propagation, vol. 67, no. 10, pp. 6334-6343, October 2019.
    [9] Yingran He, Ning Ding, Lingfei Zhang, Wenjing Zhang, and Biao Du, “Short-Length and High-Aperture-Efficiency Horn Antenna Using Low-Loss Bulk Anisotropic Metamaterial,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1642-1645, 2015.
    [10] Infineon 60 GHz radar sensor BGT60TR13C
    https://www.infineon.com/ [11] 董久明,「高頻連接器及毫米波雷達天線與餽入架構之設計」,國立台灣科
    技大學, 2019年 7月。
    [12] Texas Instruments, MIMO Radar, July 2018
    112
    [13] Jaime Lien et al, “Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar,” ACM Transactions on Graphics, Volume 35, Issue 4, Article No.: 142, pp. 1–19, July, 2016.
    [14] H. Forstén, T. Kiuru, M. Hirvonen, M. Varonen and M. Kaynak, “Scalable 60 GHz FMCW Frequency-Division Multiplexing MIMO Radar,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 2845-2855, July 2020.
    [15] B. Munk, Frequency Selective Surfaces: Theory and Design. New York,
    NY, USA: Wiley, 2000, pp. 3–4.
    [16] Y. He and G. V. Eleftheriades, “A Thin Double-Mesh Metamaterial Radome for Wide-Angle and Broadband Applications at Millimeter-Wave Frequencies,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 3, pp. 2176-2185, March 2020.
    [17] Shuangshuang Zhu, Haiwen Liu, and PinWen, “A New Method for Achieving Miniaturization and Gain Enhancement of Vivaldi Antenna Array Based on Anisotropic Metasurface,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 3, pp. 1952-1956, March 2019.
    [18] 李佳哲,「高速光電連接器及毫米波雷達天線及餽入架構之設計」,國立「高速光電連接器及毫米波雷達天線及餽入架構之設計」,國立臺臺灣科技大學,灣科技大學,2020年年7月。月。
    [19] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 3rd ed., John Wiley & Sons, 2013.
    [20] Newman, William I. (2012), Continuum Mechanics in the Earth Sciences, Cambridge University Press, pp, 6–7, ISBN 0521562899.

    無法下載圖示 全文公開日期 2026/07/27 (校內網路)
    全文公開日期 2026/07/27 (校外網路)
    全文公開日期 2026/07/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE