簡易檢索 / 詳目顯示

研究生: 劉晏瑋
Yan-Wei Liu
論文名稱: 複晶矽薄膜電晶體於主動式交流驅動有機發光二極體顯示器之新式畫素電路設計與模擬
The Novel AMOLED Pixel Design with AC bias for Improving the Brightness Uniformity
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
顏文正
Vincent Yen
彭冠臻
DZ Peng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 145
中文關鍵詞: 主動有機發光顯示器主動趨動交流驅動均勻性有機發光顯示器壽命
外文關鍵詞: Pixel design, Active matrix, AC driving, OLED lifetime
相關次數: 點閱:199下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於平面顯示器具有輕、薄、低功耗、廣視角及全彩化之特點,因此在應用上都具有相當大的潛力。在眾多不同種類的平面顯示器中,有機電激發光二極體顯示器因為具備有高亮度、視角廣、體積薄、省電、自發光..等優點,所以將會有大量的焦點集中在有機電激發光二極體顯示器上。
    在本論文中,我們探討以低溫多晶矽薄膜電晶體(LTPS-TFTs)驅動之主動有機發光二極體(AMOLEDs)電壓補償畫素電路。相較於非晶矽薄膜電晶體,低溫多晶矽薄膜電晶體(LTPS-TFTs)擁有較好的電流驅動能力及較佳的可靠度,並且可以用來整合畫素電路及週邊的驅動電路於同一塊玻璃基板上,但是由於LTPS-TFT製程的關係,導致各個畫素中LTPS-TFT產生特性上的差異而導致面板顯像品質的不均勻性,因此藉由本篇論文提出了新型的AC驅動電路來補償臨界電壓的差異、VDD 導線IR-Drop及OLED劣化的問題。
    首先,先對傳統畫素驅動電路(2T1C)進行模擬與結果討論,根據模擬結果,傳統驅動電路容易受到不同元件特性的影響,造成傳統畫素驅動電路之電流的不穩定。為了克服傳統驅動電路的不穩定性,提出了兩個改善過後的的電壓驅動之主動式有機電激發光二極體的補償電路(4T2C),(5T2C).上述兩個電路均可補償TFT臨界電壓的變異及OLED的劣化。 在AC驅動補償電路方面,首先,對2T1C加上AC電壓源後針對TFT臨界電壓補償的兩個補償電路進行討論(2T1C AC Ⅰ),( 2T1C AC Ⅱ),而後針對同時補償TFT臨界電壓及VDD Power line之IR-Drop的兩個補償電路進行討論(3T1C AC Ⅰ),( 3T1C AC Ⅱ)。AC驅動之2T1C電路為最初設計的電路,模擬結果顯示有激電機發光二極體的平均電流錯誤率僅4%.而AC驅動之3T1C電路對於Power line之IR-Drop達到1V的影響也僅是大約15%,這將對於驅動電晶體之臨界電壓以及IR-Drop的影響性有顯著的降低。
    因此,本論文中所提出的四個畫素驅動電路可有效補償低溫多晶矽薄膜電晶體所造成之元件特性的差異,也具有補償OLED使用壽命的功能,同時明顯的提升有激電機發光二極體之電流的均勻性,對於未來主動式有機電激發光二極體應用極具潛力。


    As a result of flat panel displays have the potential for slim profile, light weight, low power consumption, wide viewing angle, full color, etc. Therefore flat panel displays are essential for various applications. Among of numerous different flat panel displays, Organic Light Emitting Diode (OLED) display has some fingerprint as high brightness, wide viewing angle, light weight, low power, and producing light by itself, Display industry will pay attention to OLED display.
    In this thesis, voltage programming method of driving circuits for active-matrix-organic light-emitting-diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) have been investigated. Contrasting to amorphous silicon (a-Si) TFTs, LTPS-TFTs are provide with the higher current driving capability and the better reliability, and used to implement pixel circuits and driving circuits on a single glass substrate. But LTPS-TFT process by ELA, enable LTPS-TFT to produce the mutant problem of the characteristic. Therefore, the new voltage programming method of pixel circuit has been proposed, in order to compensate issues on variation of the threshold voltage, IR-Drop phenomenon and OLED degradation.
    First of all, conventional 2T1C pixel circuit is interpreted for simulation results and discussions. The simulation results show that output current of conventional 2T1C pixel circuit is instable owing to various characteristics in TFTs. In order to compensate the threshold voltage deviation, we propose an modified 4T2C pixel circuit. And we propose two 2T1C AC driving pixel circuits (2T1C AC Ⅰ), ( 2T1C AC Ⅱ) which can compensate the threshold voltage deviation and OLED degradation. And then we propose two pixel circuit (3T1C AC Ⅰ), ( 3T1C AC Ⅱ), which can compensate the threshold voltage deviation and IR-Drop of VDD power line. The simulation result shows the average error rate of the OLED current in 2T1C AC driving pixel circuits is about 4%. And the error rate of the 3T1C AC driving pixel circuit with IR-Drop of VDD power line is about 15%, The circuit will substantially decrease the effects include the threshold voltage and IR-Drop. In conclusion, these four proposed pixel circuits all successfully compensate for characteristics variation of LTPS-TFT and the threshold voltage variation of driving TFT and improve the current uniformity for AMOLED greatly. Therefore, the circuit designs possess the potential for the AMOLED panel application in the future.

    論文摘要 ii Abstract iv 致謝 vi Table of Content vi Chapter 1 1 Introduction 1 1.1 Liquid Crystal Display 1 1.2 Organic light emitting diode display 3 1.3 OLED Device 4 1.4 PM and AM organic light emitting diode 6 1.5 Motivation 11 1.6 Thesis Organization 12 Chapter 2 13 Pixel Design of Diving Circuit of AMOLED 13 2.1 Introduction 13 2.2 Transistor Technologies 13 2.2.1 Amorphous Silicon 13 2.2.2 Poly Silicon 14 2.2.3 The process of LTPS-TFT 15 2.2.4 OTFT 19 2.2.5 The process of OTFT 19 2.3 Digital Driving Circuits 23 2.3.1 Area Ratio Gray Scale Control (ARG) 23 2.3.2 Time Ratio Gray Scale Control (TRG) 24 2.4 Analog Driving Circuits 26 2.4.1 Voltage Programmed Circuits 26 2.4.1.1 Self-Compensation 26 2.4.1.2 Diode Connection 28 2.4.1.3 Matching TFTs 29 2.4.1.5 optical feedback 31 2.4.1.5 AC Driving 32 2.4.2 Current Programmed Circuits 34 2.4.2.1 Current Copy 34 2.4.2.2 Current Mirror 36 2.5 OLED Integration on the AMOLED Pixel Circuits 38 Chapter 3 41 Conventional 2T1C and Modified 4T2C Pixel Circuit using LTPS-TFTs FOR AMOLEDs 41 3.1 Introduction 41 3.2 AIM-SPICE and Poly-Si TFT Model 42 3.2.1 AIM-SPICE 42 3.2.2 Poly-Si TFT Model 42 3.3 Conventional 2T1C Pixel Circuit 44 3.3.1 Circuit Operation 44 3.3.2 Simulation Result and Discussion 45 3.3.3 Summary 53 3.4 Modified 4T2C pixel circuit 54 3.4.1 Simulation Result and Discussion 58 Chapter 4 71 The AC Drive Compensating Schemes for AMOLED Pixel Circuits 71 4.1 Introduction 71 4.2 The 2T1C AC driving AMOLED Pixel Circuit (I) 73 4.2.1 Circuit Operation 73 4.2.2 Simulation Result and Discussion 77 4.3 The 2T1C AC driving AMOLED Pixel Circuit (II) 87 4.3.1 Circuit Operation 87 4.3.2 Simulation Result and Discussion 91 4.4 The modified 3T1C AC driving AMOLED Pixel Circuit (I) 101 4.4.1 Circuit Operation 101 4.4.2 Simulation Result and Discussion 106 4.5 The modified 3T1C AC driving AMOLED Pixel Circuit (II) 116 4.5.1 Circuit Operation 116 4.5.2 Simulation Result and Discussion 121 4.6 Summary 131 Chapter 5 Conclusions and Future Works 133 5.1 Conclusions 133 5.2 Future works 134

    [1] A. J. Snell, K. D. Mackenzie, W. E. Spear, P. G. LeComber, and A. J. Hughes, “Application of amorphous silicon field effect transistors in addressable liquid crystal display panels,” Appl. Phys., vol. 24, pp. 357, 1981.
    [2] G. Gu and S. R. Forrest, “Design of flat-panel displays based on organic light- emitting devices,” IEEE J. Sel. Topics in Quantum Electronics, vol. 4, no. 1, pp. 83-99, 1998.
    [3] J. N. Bardsley, “International OLED technology roadmap,” IEEE J. Sel. Topics in Quantum Electronics, vol. 10, no. 1, pp. 3-9, 2004.
    [4] J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, “Organic electroluminescent devices,” Science, vol. 273, pp. 884-8, 1996.
    [5] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera and M. Tsuchida, “Flexible OLED displays using plastic substrates,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 107-14, 2004.
    [6] C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, pp. 913-15, 1987.
    [7] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, pp. 539-41, 1990.
    [8] OLED Market tracker H1 2006, isupply, http://www.isuppli.com.
    [9] Universal Display Company, http://www.universaldisplay.com
    [10] P. F. Tian, V. Bulovic, P. E. Burrows, G. Gu, S. R. Forrest, and T. X. Zhou, “Precise,scalable shadow mask patterning of vacuum-deposited organic light emitting devices,” Journal of Vacuum Science & Technology A (Vacuum, Surfaces, and Films), vol. 17, pp. 2975-81, 1999.
    [11] J. Bharathan and Y. Yang, “Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo,” Appl. Phys. Lett., vol. 72, pp. 2660-2, 1998.
    [12] D. A. Pardo, G. E. Jabbour, and N. Peyghambarian, “Application of screen printing in the fabrication of organic light-emitting devices,” Adv Mater, vol. 12, pp. 1249-52, 2000.
    [13] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett., vol. 65, pp. 2922-2924, 1994.
    [14] H. Aziz, Z. D. Popovic, N. X. Hu, A.M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science, vol. 283, pp. 1900-1902, 1999.
    [15] Novaled Inc. http://www.novaled.com/
    [16] R. S. Deshpande, V. Bulovic, and S. R. Forrest, “White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer,” Appl. Phys. Lett., vol. 75, pp. 888-890, 1999.
    [17] M. Stwart, R. S. Howell, L. Dires, and K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, vol. 48, pp. 845-851, 2001.
    [18] G. GU, Stephen R.Forrest, “Design of flat-panel displays based on organic light-emitting devices”, IEEE Journal of selected topics in quantum electronics, pp. 83-99, 1998.
    [19] Yi He, Reiji Hattori, Jerzy Kanicki, “Current-source a-Si:H thin-film-transistor circuit for active-matrix organic light-emitting displays”, IEEE Electron Device Lett, pp. 590-592, 2000.
    [20] Takashi Chuman, Satoru Ohta, Satoshi Miyaguchi, Hideo Satoh, Takahisa Tanabe, Yoshiyuki Okuda, Masami Tsuchida, “Active Matrix Organic Light Emitting Diode Panel using Organic Thin-Film Transistors”, SID ’04 DIGEST, pp. 45-47, 2004.
    [21] A. G. Lewis, D. D. Lee, and R. H. Bruce, “Polysilicon TFT circuit design and performance”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 21, 12, pp.1833 (1992)
    [22] Y. H. Kim, C. Y. Sohn, J. W. Lim, S. J. Yun, C.S. Hwang, C. H. Chung, Y. W. Ko, and J. H. Lee,” High-Performance Ultralow-Temperature Polycrystalline Silicon TFT Using Sequential Lateral Solification”, IEEE Electron Device Lett., 25, 8, pp550 (2004)
    [23] Y. Iwata, M. Momodomi, T. Tanaka, H. Oodaira, Y. Itoh, R. Nakayama, R. Kirisawa, S. Aritome, T. Endoh, R. Shirota, K. Ohuchi, and F. Masuoka, AHigh-Density NAND EEPROM with Block-Page Programming for Microcomputer Applications, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 25, 2, pp 417 (1990)
    [24] C. Kuo, T. Toms, M. Weidner, H. Choe, D. Shum, K. M. Chang , and P. Smith, “A microcontroller with 100 K bytes embedded flash EEPROM” Solid-State and Integrated Circuit Technology, 1995 4th International Conference on pp. 138-140.
    [25] Simon W-B. Tam, Yojiro Matsueda, Hiroshi Maeda, Mutsumi Kimura, Tatsuya Shimoda, and Piero Migliorato, “Polysilicon TFT drivers for light emitting polymer displays,” in Proceedings of International Display Workshops, 1999, pp. 175-178.
    [26] Ju Young Jeong and Jaegeun Kim, “Dual modulation driving for poly-Si TFT active matrix OLED displays,” in Proceedings of International Display Workshops, 2003, pp. 551-554.
    [27] Yoshifumi Tanada, Mitsuaki Osame, Ryota Fukumoto, Keiko Saito, Junichiro Sakata, Shumpei Yamazaki, Satoshi Murakami, Kanji Inose, Nobuyuki Miyoshi, and Kazuhiko Sato, “A 4.3-in. VGA (188ppi) AMOLED display with a new driving method,” in SID Tech. Dig., 2004, pp. 1398-1401.
    [28] K Inukai, H Kimura, M Mizukami, J. Maruyma, S.Murakami, J. Koyama, T, Konuma , S.Yamazaki, “4.0-in. TFT-OLED displays and a novel digital driving method”, SID Tech. Dig., 2000, pp.924-927.
    [29] M Mizukami, K Inukai, H Yamagata, T. Konuma, T.Nishi, J. Koyama, S. Yamazaki , ‘T. Tsutsui , “6-Bit digital VGA OLED”, SID Tech. Dig., 2000, pp. 912-915.
    [30] Joon-Chul Goh, Hoon-Ju Chung, Jin Jang, and Chul-Hi Han, “A new pixel circuit foractive matrix organic light emitting diodes,” IEEE Electron Device Lett., vol. 23, pp. 544-546, 2002.
    [31] S. Ono, Y. Kobayashi, K. Miwa, T. Tsujimura, “Pixel circuit for a-Si AM-OLED,” in Proceedings of International Display Workshops, 2003, pp. 255-258.
    [32] Sang-Moo Choi, Oh-Kyong Kwon, and Ho-Kyun Chung, “An improved voltage programmed pixel structure for large size and high resolution AM-OLED displays,” in SID Tech. Dig., 2004, pp. 260-263.
    [33] Jae-Hoon Lee, Ji-Hoon Kim, and Min-Koo Han, “A new a-Si:H TFT Pixel Circuit Compensating the Threshold Voltage Shift of a-Si:H TFT and OLED for Active Matrix OLED ,” IEEE Electron Device Lett., vol. 26, pp. 897-899, 2005.
    [34] Chih-Lung Lin and Yung-Chin Chen, “A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no.2 ,pp129-131, 2007.
    [35]Chih-Lung Lin, Guo-Chao Liao, "A Novel Top Emission Pixel Circuit Compensating for TFT Threshold Voltage Variation and Luminance Degradation of OLED," Electron Devices and Solid-State Circuits(EDSSC), pp. 385-388, 2007. 
    [36] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee, and M. K. Han, " A new a-Si:H TFT Pixel Design Compensating Threshold Voltage Degradation of TFT and OLED," in SID Tech. Dig., 2004, pp. 264-267.
    [37] Joon-Chul Goh, Jin Jang, Kyu-Sik Cho, and Choong-Ki Kim, “A new a-Si:H thin -film transistor pixel circuit for active-matrix organic light-emitting diodes,” IEEE
    Electron Device Lett., vol. 24, pp. 583-585, 2003.
    [38] Ji-Hoon Kim, Jae-Hoon Lee, Woo-Jin Nam, Bong-Hyun You, and Min-Koo Han “A new AMOLED pixel design compensating threshold voltage degradation of s-Si:H TFTs and OLED,” in Proceedings of International Display Workshops, 2004, pp. 531-534.
    [39] S. M. Choi, O. K. Kwon, N. Komiya, and H. K. Chung, “A self-compensated voltage programming pixel structure for active-matrix organic light emitting diodes,” in Proceedings of International Display Workshops, 2003, pp. 535-538.
    [40] Sang-Moo Choi, Oh-Kyong Kwon, and Ho-Kyun Chung, “An improved voltage programmed pixel structure for large size and high resolution AM-OLED displays,” in SID Tech. Dig., 2004, pp. 260-263.
    [41] Chin-Lung Lin, Tsung - Ting Tsai, and Yung - Chih Chen, “A Novel Voltage-Feedback Pixel Circuit for AMOLED Displays,” Journal of Display Technology., pp.54-60, 2008.
    [42] Du-Zen Peng, Shin-Chang Chang, and Yaw-Ming Tsai, “Novel Pixel Compensation Circuit for AMOLED Display,” in SID Tech. Dig., 2005, pp. 814-817.
    [43] K.C. Park, J.H. Jeon, Y. Kim, J. B. Choi, Y. J. Chang, and Z. Zhan, C. Kim, “A poly-Si AMOLED display with high uniformity,” Solid-State Electronics lett., vol 52, pp 1691-1693, 2008.
    [44] Po-Tsun Liu, Li-Wei Chu, “Innovative Voltage Driving Pixel Circuit Using Organic Thin-Film Transistors for AMOLEDs,” Journal of Display Technology., pp.224-228, 2009.
    [45] Yang-Wan Kim, Sung-Ryong Lee, Oh-Kyong Kwon, Keum-nam Kim, Yong-Sung Park, Sun-A Yang, Dong-Young Shin, Byung-Hee Kim, and Ho-Kyoon Chung, “A new pixel structure for AMOLED panel with 6-bit gray scale,” in EURODISPLAY, 2002, pp.613-616.
    [46] Young-ju Park, Jin Huh, Byeong-koo Kim, and Ohyun Kim, “A new pixel circuit for voltage driven AMOLED panel,” in AMLCD Tech. Dig., 2004, pp. 123-126.
    [47] Sang-Hoon Jung, Woo-Jin Nam, and Min-Koo Han, “A new voltage modulated AMOLED pixel design compensating threshold voltage variation of poly-Si TFTs,” in SID Tech. Dig., 2002, pp. 622-624.
    [48] Sang-Hoon Jung, Woo-Jin Nam, and Min-Koo Han, “A New Voltage Modulated AMOLED Pixel Design Compensating Threshold Voltage Variation of Poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, pp. 690-692, 2004.
    [49] Chih-Lung Lin and Tsung-Ting Tsai, “A Novel Voltage Driving Method Using 3-TFT Pixel Circuit for AMOLED,” IEEE Electron Device Lett., vol. 28, pp. 489-491, 2007.
    [50] Steven Deane, David Fish, Nigel Young, Andrew Steer, David George, Andrea Giraldo, Herbert Lifka, and Wouter Oepts, “Optical Feedback for AMOLED Pixel Circuits,” in 210th ECS Meeting ,vol. 602. pp 1557, 2006.
    [51] D. Fish, N. Young, S. Deane, A. Steer, D. George, A. Giraldo, H. Lifka,O. Gielkens, and W. Oepts, “Optical feedback for AMOLED display compensation using LTPS and a-Si:H technologies,” in SID Tech. Dig, 2005, pp. 1340 – 1343.
    [52] D.A. Fish et al, “Improved optical feedback for AMOLED differential ageing correction”, in SID Tech. Dig., 2004, pp1120 - 1122.
    [53] Kang MH, Hur JH., Nam YD, Lee EH, Kim SH, Jang J, “An optical feedback compensation circuit with a-Si:H thin-film transistors for active matrix organic light emitting diodes”, J Non-Crys Solids; vol.354, pp2523-2528, 2008.
    [54] James L. Sanford, and Frank R. Libsch, “TFT AMOLED pixel circuits and driving methods,” in SID Tech. Dig., 2003, pp. 10-13.
    [55] Dechun Zou, Masayuki Yahiro, and Tetsuo Tsutsui, “Improvement of current-voltage characteristics in organic light emitting diodes by application of reversed-bias voltage,” Jpn. J. Appl. Phys., vol. 37, pp. L1406-L1408, 1998.
    [56] Si Yujuan, Zhao Yi, Chen Xinfa, and Liu Shiyong, “A simple and effective ac pixel driving circuit for active matrix OLED,” IEEE Electron Device Lett., vol. 50, pp. 1137-1140, 2003.
    [57] Yen-Chung Lin, Han-Ping D.Shieh, “Improvement of Brightness Uniformity by AC Driving Scheme for AMOLED Display,” IEEE Electron Device Lett., vol. 25, pp. 728-730, 2004.
    [58] Yujuan Si, Liuqi Lang, Yi Zhao, Xinfa Chen, and Shiyong Liu, “Improvement of Pixel Circuit for Active-Matrix OLED by Application of Reversed-Biased Voltage,” IEEE Trans on Circuits and Systems-II: Express Briefs., vol. 52, pp 856-859,2005.
    [59] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875-878.
    [60] Yi He, Reiji Hattori, Jerzy Kanicki, “Current-Source a–Si:H Thin-Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays,” IEEE Electron Device Lett., vol. 12, pp. 590-592, 2000.
    [61] Yi He, Reiji Hattori, and Jerzy Kanicki, “Improved A-Si:H TFT Pixel Electrode Circuits for Active-Matrix Organic Light Emitting Displays,”IEEE TRANSACTIONS ON ELECTRON DEVICES., vol. 48, pp. 1322-1325, 2001.
    [62] Tsuyoshi Uemura, Yoneharu Takubo, “A Novel Current Programmed Pixel for Active Matrix OLED Displays,” in SID Tech. Dig., 2003, pp. 108-111.
    [63] Shahin J. Ashtiani, Peyman Servati, Denis Striakhilev,and Arokia Nathan,”A 3-TFT Current-Programmed Pixel Circuit for AMOLEDs,” IEEE TRANSACTIONS ON ELECTRON DEVICES., vol. 52, pp. 1514-1518, 2005.
    [64] Xiaojun Guo; Silva, S.R.P,” A Simple and Effective Approach to Improve the Output Linearity of Switched-Current AMOLED Pixel Circuitry,” IEEE Electron Device Lett., vol. 28, pp. 887-889, 2007.
    [65] Aram Shin, Sang Jun Hwang, Seung Woo Yu, and Man Young Sung,” Design of Organic TFT Pixel Electrode Circuit for Active-Matrix OLED Displays,” JOURNAL OF COMPUTERS., vol. 3, pp. 1-5,2008.
    [66]Yang-Wan Kim, Oh-Kyong Kwon, Keum-Nam Kim, Dong-Young Shin, Byung-Hee Kim, and Ho-Kyoon Chung, “A new current programmable pixel structure for large-size and high resolution AMOLEDs,” in Proceedings of International Display Workshops, 2002, pp. 367-370.
    [67] T. Sasaola, M. Sekiya, A.Yumoto, J. Yamada, T. Hirano, Y. lwase, T.Yamada, T.lshibashi, T. Mori, M. Asano , S. Tamira, and T. Urabe, “ A 13.0-inch AMOLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit,” SID Tech. Dig., pp. 384-387, 2001.
    [68] J. H. Lee, W. J. Nam, S.M. Han, and M.K. Han, “OLED Pixel Design Employing a Novel Current Scaling Scheme,” SID Tech. Dig., pp. 490-493, 2003.
    [69] J. H. Lee, W. J. Nam, S.H. Jung, and M.K. Han, “A New Current Scaling Pixel Circuit for AMOLED,” IEEE Electron Device Lett., vol. 25, pp. 280-282, 2004.
    [70] S. S. Lo, T. W. Chang and S. T. Lo, "Asymmetric-Vdd Current Mirror Pixel for Active Matrix OLED Displays", SID Tech. Dig., pp. 237-239, 2004.
    [71] J. H. Lee, W. J. Nam, B. K. Kim, H. S. Choi, Y. M. Ha, and M.K. Han, , “A New Poly-Si TFT Current-Mirror Pixel for Active Matrix Organic Light Emitting Diode,” IEEE Electron Device Lett., vol. 27, pp. 830-833, 2006.
    [72 ]Shin, A. Bongno Yoon, Man Young Sung, "A novel current driving method using organic TFT pixel circuit for active-matrix OLED,” Internatonal Conference on Microelectronics,” pp. 413-416, 2007.
    [73] Shin-Shian Lo, Tzeng-Wen Chang, and Shin-Tai Lo, “Asymmetric-Vdd current mirror pixel for active matrix OLED displays,” in SID Tech. Dig., 2004, pp. 237-239.
    [74] P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett., vol. 65, pp. 2922-2924, 1994.
    [75] V. Bulovic, P. Tian, P. E. Burrows, M. R. Gokhale, S. R. Forrest and M. E. Thompson, “A surface-emitting vacuum-deposited organic light emitting device,” Appl. Phys. Lett., vol. 70, pp. 2954-6, 1997.
    [76] T. Chu, J. Chen, S. Chen, C .J. Chen, C. H. Chen,“Highly efficient and stable inverted bottom-emission organic light emitting devices,” Appl. Phys. Lett., vol. 89, no. 23, pp. 2922- 2924, 1994.
    [77] Hsi-Rong Han, Chien-Chung Kuo, Wen-Tui Liao, Shin-Tai Lo, and Wen-Chun Wang, “Active organic light emitting diode drive circuit,” in Proceedings of International Display Workshops, 2004, pp. 523-526.
    [78] J. H. Lee, C. W. Han, B. H. You and M. K. Han, "The Suppression of the threshold voltage shift in a-Si TFT pixel for AMOLED by employing the reverse bias annealing", in IDW Tech. Dig., pp. 541-542, 2004.
    [79] S. A. Van Slyke, C. H. Chen, and C.W. Tang, “Organic electroluminescent devices with improved stability,” Appl. Phys. Lett., vol. 69, no. 15, pp. 2160–2162, 1996.
    [80] 張居裕 “新穎主動有機發光二極體之畫素驅動電路設計與模擬,“臺灣科技大學 2007

    無法下載圖示 全文公開日期 2014/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE