簡易檢索 / 詳目顯示

研究生: 林繼宏
Chi-Hung Lin
論文名稱: 以二乙基一氯鎵為鎵源先驅物的氮化鎵原子層磊晶之研究
Atomic layer epitaxy of gallium nitride using diethylgallium chloride as gallium source
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 魏大欽
Ta-Chin Wei
周賢鎧
Shyan-Kay Jou
邱正杰
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 105
中文關鍵詞: 原子層磊晶氮化鎵氮化銦鎵二乙基一氯鎵
外文關鍵詞: atomic layer epitaxy(ALE), gallium nitride(GaN), indium gallium nitride(InGaN), diehtylgallium chloride(DEGaCl)
相關次數: 點閱:266下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用原子層磊晶(ALE)技術合成氮化鎵(GaN)及氮化銦鎵(InxGa1-xN)三元混晶膜。以二乙基一氯鎵(DEGaCl)及氨氣(NH3)作為反應原料,並選用已成長氮化鎵的藍寶石磊晶片為基材,在一可交互供給原料的CVD反應器內進行長膜。結果發現,以此反應原料系統在符合自限式反應機制的溫度範圍(500~600℃)下,在較低溫的500℃長膜有多晶化現象;在較高的溫度(550~600℃)長膜則可獲得無殘碳、殘氯、高平坦度及高結晶品質的GaN(0002)薄膜。另外,探討當再加入三甲基銦於ALE程序中藉由III族先驅物混合以不同[TMIn]/[DEGaCl]供給比例通入以成長三元混晶膜(InxGa1-xN)。當溫度在580℃下,[TMIn]/[DEGaCl]供給比例值達到2.0時,可長出InxGa1-xN (x<0.2)的薄膜,但卻有In 金屬析出問題,推測可能NH3在此溫度下的裂解量不足,無法將通入的In原子完全氮化,或可能是表面提供給In原子的活化位置受限於DEGaCl的強吸附性,導致多餘的In 原子在表面集結。


    allium nitride (GaN) and Indium gallium nitride (InxGa1-xN) films were grown by metalorganic atomic layer epitaxy (ALE) technique using diethylgallium chloride (DEGaCl) as source material for Ga in a cold-wall, chemical vapor deposition reactor. Self-limiting growth were obtained over a wide range of growth conditions, including growth temperatures (773~873 K) and the exposure time of DEGaCl. When the substrate temperature was 773 K, the films formed showed polycrystalline property. Increasing substrate temperatures to 823 ~873 K, epitaxy GaN (0002) films were obtained. The most advantage of DEGaCl was in its capability to form extremely uniform GaN films. Another try to form tertiary InxGa1-xN layers by further adding trimethylindium (TMI) was also made. The results showed that the In content in the films could be increased up to 20% (InxGa1-xN, x<0.2), when the feed ratio of [TMI]/[DEGaCl] was set at 2 under 853 K. However, In metal precipitation was accompanied, probably due to the deficiency of N supply because of the inertness of NH3 under this low temperature. The less adsorption of metal In compared with the adsorbed GaCl maybe another reason for the low In incorporation amount.

    目錄 中文摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥I 英文摘要‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥.Ⅱ 目錄‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥.Ⅲ 圖索引‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥.Ⅴ 表索引‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥.Ⅸ 第一章 緒論 1.1 氮化鎵(GaN)的發展及應用‥‥‥‥‥‥‥‥‥‥‥‥‥‥.1 1.2 研究背景‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥. 7 1.3 原子層磊晶法的薄膜成長機制及特點‥‥‥‥‥‥‥‥‥.10 1.4 研究方向及目的‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥.13 第二章 實驗相關部分 2.1 實驗氣體及藥品‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥.19 2.2 實驗裝置及分析儀器 2.2.1 實驗裝置及方法‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 24 2.2.2 分析儀器‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 33 第三章 結果與討論 3.1 DEGaCl/NH3-ALE法成長GaN薄膜‥‥‥‥‥‥‥‥‥.36 3.1.1 DEGaCl原料供應時間與GaN成長速率之關係‥‥‥ 36 3.1.2 DEGaCl purge時間與GaN成長速率之關係‥‥‥‥‥ 38 3.1.3 不同Purge氣體對GaN薄膜成長表面形態之影響‥‥.40 3.1.4 NH3原料供應時間與GaN成長速率之關係‥‥‥‥‥. 42 3.1.5 NH3 purge時間與GaN成長速率之關係‥‥‥‥‥‥‥ 43 3.2 DEGaCl/NH3-ALE法成長GaN薄膜之溫度效應‥‥‥‥‥64 3.2.1 成長溫度對GaN成長速率及表面形態的效應‥‥‥‥.64 3.2.2 薄膜結晶品質與成長溫度的關係‥‥‥‥‥‥‥‥‥‥66 3.3 TMIn/DEGaCl/NH3-ALE法成長三元混晶InGaN‥‥‥‥.80 3.3.1 Ⅲ族先驅物混合通入的ALE-InGaN成長‥‥‥‥‥‥.80 第四章 結論•••••••••••••••••••••••••••••••••••••••••••• 90 參考文獻•••••••••••••••••••••••••••••••••••••••••••••••• 92

    參考文獻
    [01] S. Nakamura, MRS Bulletin, 37(1998)
    [02] I. Akasaki, H. Amano., N. Sawaki and Y. Toyoda, Appl. Phys. Lett., 48, 353(1986)
    [03] S. Nakamura, S. Masayuki and H. Takashi, Jpn. J. Appl. Phys., 30, L1708(1991)
    [04] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano and I. Akasaki , Jan.J.Appl., 37, L316(1998)
    [05] S. Nakamura, N. Iwawa, M. Senoh and T. Mukai, Jpn. J. Appl., 32, 1258 (1992)
    [06] H. Amano., I. Akasaki, T. Kozawa, K.Hiramatsu, N. Sawaki, K. Ikeda and Y. Ishii, J. Lumin., 40-41, 121 (1989).
    [07] H. Amano., M. Kito, K. Hiramatsu, and I. Akaaki, Jpn. J. Appl. Phy., 28, L2112 (1989)
    [08] S. Nakamura, M. Senoh and T. Mukai, Jpn. J. Appl. Phys., 30, L1708 (1991).
    [09] S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett., 64, 1687 (1994)
    [10] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, Appl. Phys. Lett., 67, 1868 (1995)
    [11] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto and H. Kiyoku, Appl. Phys. Lett., 70, 1417 (1995)
    [12] Y. Ohba and A. Hatano, J. Crystal Growth, 145, 214(1994)
    [13] C. J. sun and M. Razeghi, Appl. Phys. Lett., 63, 973 (1993)
    [14] C. J. Eiting, P. A. Grudowski and R. D. Dupuis, J. Crystal Growth, 195, 340(1998)
    [15] D. A. Neumayer and J. G. Ekerdt, Chem. Mater., 8, 9(1996)
    [16] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdior and M. Burns, J. Appl. Phys., 76, 1363 (1994)
    [17] A. Koukitu and H. Seki, Jpn. J. Appl. Phys., 35, L1638 (1996)
    [18] T. Suntola, “Atomic Layer Epitaxy”, North-Holland Amsterdam (1989)
    [19] J. Wang, Z. Zhu, K. T. Park, K. Hiraga, and T. Yao, J. Electron.
    Mater. 26, 232 (1997).
    [20] T. F. Kuech, E. Veuhoff, T. S. Kuan, V. Deline and R. Potemski, J. Crystal Growth, 77, 257 (1986).
    [21] T. F. Kuech and R. Potemski, Appl. Phys. Lett., 47, 821 (1985)
    [22] N. Kobayashi and Y. Horikoshi, J. Appl. Phys., 30, L319 (1991)
    [23] K.Ishikawa, R. Kobayashi, S. Narahara and F. Hasegawa, Jpn. J. Appl. Phys., 31, L1716 (1992)
    [24] J. Wu and W. Walukiewicz, Superlattices and Microstructures.,34,63 (2003)
    [25] C. Sasaoka, M. Yoshida and A. Usui, Jpn. J. Appl. Phys., 27, L490 (1988)
    [26] T. F. Kuech, R. Potemski and F. Cardone, J. Crystal Growth, 124, 318 (1992).
    [27] E. S. Hellman, MRS Internet J. Nitride Semicond. Res., 3, 11 (1998)
    [28] A. Usui, Proceedings of The IEEE.,80,10 (1992)
    [29] L. Zhang and R. Zhang, MRS Internet J. Nitriden Semicond. Res.,4S1, 3.62 (1999)
    [30] A.G. Bhuiyan, A .Hashimoto and A. Yamamoto, J.Appl.phy.s, 94,2779 (2003)
    [31] D.Koleske, A.Wickenden. and L.Henry, J.Appl.phys.,84, 1998 (1998)
    [32] S.Nakamura and G.Fasol, “The Blue Laser Diodes”, springer, berlin (1997)
    [33] 陳威霖,”以三甲基鎵/氨氣為反應系統的原子層磊晶氮化鎵之研究”,國立台灣科技大學92年碩士論文
    [34] 陳碩偉,”以原子層磊晶技術製備氮化鎵及氮化銦鎵磊晶薄之研究”,國立台灣科技大學93年碩士論文。
    [35] 王晨宇,”適合作為原子層磊晶氮化鎵的鎵源先驅物之研究”,國立台灣科技大學94年碩士論文。

    QR CODE