簡易檢索 / 詳目顯示

研究生: 張家鏵
Chia-Hua Chang
論文名稱: GaN FET應用於高頻化錯相式降壓型功率因數修正器之研製
Study and Implementation of a High-Frequency Operation Interleaved Buck Power Factor Corrector with GaN FETs
指導教授: 羅有綱
Yu-Kang Lo
邱煌仁
Huang-Jen Chiu
口試委員: 林景源
None
鄭世仁
None
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 110
中文關鍵詞: 降壓型功率修正因數高頻化氮化鎵元件整合電感平面電感
外文關鍵詞: high-frequency operation, GaN FETs, integrated inductor
相關次數: 點閱:207下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製一高頻化錯相式降壓型功率因數修正器。高頻操作的主要目的是減少電路所需電感量和體積,錯相式架構的電感器採用整合電感器,並且利用電路板上的佈局當作電感器繞組,以減少電感體積和成本,降壓型架構則可降低輸出電容之耐壓規格。由於操作頻率的增加,切換損失也因此隨之增加,所以本論文採用GaN FET,使得因為高頻化所增加之切換損失降至最低。本論文透過模擬軟體PSIM驗證控制電路、模擬軟體Simplis進行損耗分析。最後設計並實作一300 W高頻化錯相式降壓型功率因數修正器,其輸出規格為80 V/3.75 A,輸入範圍則是90 VAC~264 VAC,切換頻率為300 kHz,滿載效率最高可達95.21 %,總諧波失真符合IEC 61000-3 -2 Class D規範。


    The main purpose of this thesis is to study and implement an interleaved buck power factor corrector (PFC) with high-frequency operation. High-frequency operation can reduce the inductor size and the converter’s volume. The inductors for the interleaved topology are integrated into one inductor. Additionally, the traces on the PCB are treated as windings to further reduce the cost and volume. With the buck-type topology, the voltage rating for the output capacitor is lower. High switching frequency will result in higher switching loss. Therefore, GaN-based FETs are selected as the main switches to reduce the switching loss. In this thesis, simulations of controller and loss analysis are performed by PSIM and Simplis, respectively. Finally, a 300-W interleaved buck PFC prototype with an output of 80 V/3.75 A and a fixed switching frequency of 300 kHz was built to verify the operations of the circuit and theoretical analysis. The efficiency of the tested prototype reaches 95.21 % at full load. And the line current harmonic contents can also meet the IEC 61000-3-2 Class D regulations.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖目錄 VI 表目錄 XI 第一章 緒 論 1 1.1 研究背景 1 1.2 論文大綱 3 第二章 功率因數修正原理 4 2.1 總諧波失真與功率因數之定義 4 2.2 主動式功率因數修正器電路架構 8 2.3 主動式功率因數修正器控制方式 10 2.3.1 峰值電流模式 10 2.3.2 平均電流模式 12 2.3.3 箝位電流模式 14 第三章 高頻化錯相式降壓型功率因數修正器架構與原理 16 3.1 降壓型功率因數修正器 16 3.1.1 連續導通模式 19 3.1.2 不連續導通模式 23 3.2 錯相式箝位電流模式控制架構 28 3.2.1 錯相式架構 28 3.2.2 箝位電流模式控制 32 3.2.3 斜率補償 37 3.3 整合電感 44 3.4 氮化鎵元件 47 第四章 高頻化錯相式降壓型功率因數修正器設計流程 50 4.1 電路電氣規格制定 50 4.2 電流分析 51 4.2.1 輸入電流 51 4.2.2 二極體的平均電流 54 4.2.3 橋式整流器的平均電流 55 4.2.4 主動開關元件的有效值 56 4.3 功率元件設計 57 4.4 控制元件設計 66 第五章 實驗數據與實驗結果 70 5.1 電路模擬 70 5.2 損耗模擬 73 5.4 實驗數據與波形 77 第六章 結論與未來展望 93 6.1 結論 93 6.2 未來展望 94 參考文獻 95  

    [1] 宋自恆、林慶仁,功率因數修正器之原理與常用元件規格,新電子科技雜誌217期,2004年。
    [2] N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics
    Converters, Applications and Design” John Wiley & Sons, 3rd Edition, 2003.
    [3] A. l. Pressman, “Switching Power Supply Design” McGraw-Hill, Inc., 1998.
    [4] L. Huber, L. Gang, and M. M. Jovanović, “Design-Oriented Analysis and
    Performance Evaluation of Buck PFC Front-End” IEEE Transactions on
    Industrial Electronics, Vol. 25, no. 1, pp. 85-94, May 2010.
    [5] L. Huber and M.M. Jovanović, “Design-oriented Analysis and Performance
    Evaluation of Clamped-Current-Boost Input-Current Shaper for Universal-
    Input-Voltage Range” IEEE Transactions on Power Electronics, Vol. 13, no.3,
    pp. 528-537, May 1998.
    [6] D. Maksimović, “Design of the Clamped-Current High-Power-Factor Boost
    Rectifier” IEEE Transactions on Industrial Electronics, Vol. 31, no. 5,
    September 1995.
    [7] H. Choi, “Interleaved Boundary Conduction Mode (BCM) Buck Power Factor \
    Correction (PFC) Converter” IEEE Transactions on Power Electronics, Vol.
    28, no.6, June 2013.
    [8] F. Yang, X. Ruan, Y. Yang and Z. Ye, “Interleaved Critical Current Mode \
    Boost PFC Converter with Coupled Inductor” IEEE Transactions on Power
    Electronics, Vol. 26, no.9, Semtember 2011.
    [9] T. Marron, “GaN Based FETs for Power Switching Applications”, Semiconductor
    Device and ModelII, March 2010.
    [10] Robert W. Erickson. and Dragan Maksimovic, “Fundamentals of Power
    Electronics” 2nd Edition, 2000.
    [11] X. Xie, C. Zhao, L. Zheng, and S. Liu, “An Improved Buck PFC Converter with
    High Power Factor” IEEE Transactions on Power Electronics, Vol. 28,
    no.5,May 2013.
    [12] V. Grigore and J. Kyyra, “High Power Factor Rectifier Based on Buck
    Converter Operating in Discontinuous Capacitor Voltage Mode” IEEE
    Transactions on Power Electronics, Vol. 15, no.6, November 2000.
    [13] 梁適安,「交換式電源供給器之理論與實務設計(修訂版)」,台北:全華科技圖書股份有限公司,
    2008。
    [14] EPARC,「電力電子學綜論」,台北:全華科技圖書股份有限公司,2007。
    [15] H. Wei and I. Batarseh, “Comparison of Basic Converter Topologies for Power
    Factor Correction” Proc. of IEEE Power Electronics Specialists Conference,
    pp. 1162-1172, 1998.
    [16] W. W. Weaver and P. T. Krein, “Analysis and Applications of a Current-
    Sourced Buck Converter” in Proc. IEEE Appl. Power Electron. Conf.(APEC)
    Proc. , pp. 1664–1670, Feb. 2007.
    [17] Texas Instruments Inc, “Benefits of a Multiphase Buck Converter”,
    Application Note, 2012.
    [18] C. Bing, X. Yun-Xiang, H. Feng, and C. Jiang-Hui, “A Novel Single-Phase
    Buck PFC Converter based on One-Cycle Control” in Proc. CES/IEEE Int.Power
    Electron. Motion Control Conf. (IPEMC), pp. 1401–1405, Aug. 2006.
    [19] STMicroelectronics Inc, “UC3842 Current Mode PWM Controller” Data Sheet,
    June. 1999.
    [20] P. L Wong, “Performance Improvements of Multi-Channel Interleaving Voltage
    Regulator Modules with Integrated Coupling Inductors” Blacksburg Virginia,
    March 2011.
    [21] Texas Instruments Inc, “Power Factor Correction Using the Buck Topology-
    Efficiency Benefits and Practical Design Considerations” Application Note
    SLUP264, June. 2010.
    [22] Texas Instruments Inc, “UCC29910 Buck PFC Controller” Data Sheet, June.
    2010.
    [23] 宜普電源轉換公司,“氮化鎵功率電晶體的基礎” Application Note, 2010.

    無法下載圖示 全文公開日期 2018/06/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE