簡易檢索 / 詳目顯示

研究生: 梁鐘奕
Zhong-Yi Liang
論文名稱: 氮化鎵薄膜於氮化鋁/石墨烯/藍寶石基板之成長與特性研究
Growth and characterizations of GaN thin-film grown on AlN/graphene/sapphire substrates
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 黃柏仁
Bohr-Ran Huang
郭東昊
Dong-Hua Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 67
中文關鍵詞: 石墨烯氮化镓氮化铝缓冲层直接成长法
外文關鍵詞: Graphene, GaN, AlN, Buffer layer, Direct growth
相關次數: 點閱:257下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文呈現了氮化鋁緩衝層結構之於石墨烯/藍寶石基板上製備高品質氮化鎵薄膜的重要性。本文使用低壓化學氣相沉積法(LPCVD)在在藍寶石基板上成長石墨烯。首先會在兩吋藍寶石基板上蒸鍍一層銅膜以便於獲取完全覆蓋基板的石墨烯層。在通過調整銅膜厚度,反應氣體比例和成長時間對製程條件進行優化後,具備高材料品質(i. e. D/G ratio = 0.15)的石墨烯層可以在兩英吋藍寶石基板上獲得。在製備完石墨烯之後,一系列不同成長溫度的20 nm厚氮化鋁緩衝層會用射頻濺鍍系統(RF-sputtering)製備。比較室溫下成長的和550 ℃成長的氮化鋁緩衝層,平均表面粗糙度從0.12 nm降低到0.05 nm。另外,通過使用X射線光電子能譜(XPS)分析550 ℃成長的氮化鋁緩衝層,N 1s 軌域的細部掃描可以觀測到400 eV和405 eV這兩個分別屬於Al-N 和O-N 鍵結的譜峰。最後用金屬有機化學氣象沉積系統(MOCVD)在氮化鋁緩衝層/石墨烯/藍寶石基板上成長3 μm的氮化鎵薄膜。從X射線繞射分析(XRD)的量測結果可以算出(002)面和(102)面搖擺曲線的半高寬(FWHM of XRC)進而可以推測出螺型位錯和刃型位元錯的密度分別為3.9 108和2.3 109 cm-2。通過拉曼(Raman)光譜中E2(high)譜峰的位置570.3 cm-1可以推測出氮化鎵薄膜存在壓應力。值得注意的是拉曼光譜中657 cm-1位置存在一個極小的譜峰。另外,在熒光(PL)光譜中2.2 eV位置同時也存在一個譜峰。通過用二次離子質譜儀(SIMS)對樣品進行碳元素的縱深分析證明瞭石墨烯在氮化鎵成長時(1100 ℃)會有擴散的現象發生。在氮化鎵薄膜中,碳含量從氮化鎵成長從室溫製備氮化鋁緩衝層/石墨烯/藍寶石基板的3 1019 atoms/cm-3 下降到成長在550 ℃製備的氮化鋁緩衝層/石墨烯/藍寶石基板的2 1018 atoms/cm-3 。本文中還對氮化鎵樣品進行了電性量測,鈦/鋁的歐姆接點和鎳/金的肖特基接點用熱蒸鍍機鍍在氮化鎵薄膜上。本文所有的樣品都出現了反向飽和電流過大的問題(>104 A/cm2)導致了很差的肖特基特性出現。然而,在加入550 ℃製備的氮化鋁緩衝層後,反向飽和電流和直接在石墨烯/藍寶石基板上成長的氮化鎵薄膜相比,下降了兩個數量級。實驗結果說明氮化鋁緩衝層可以有效阻絕碳原子擴散,對本文中製備的氮化鎵薄膜品質起到至關重要的作用。


    This study presents a crucial AlN buffer layer structure on graphene/sapphire substrate for preparing high material quality of GaN thin-film. The graphene layer was deposited on sapphire substrate by low-pressure chemical vapor deposition system. In order to achieve a full coverage of graphene layer on the 2 inch sapphire substrate, a Cu film was firstly deposited on sapphire substrate. After optimized by adjusting thickness of Cu film, precursor ratio and growth time, high material quality (i.e. D/G ratio = 0.15) of graphene layer can be achieved on 2 inch sapphire substrate. Then, a 20-nm-thick AlN buffer layer was grown on graphene/sapphire substrate by the RF-sputtering system at various temperatures. The average surface roughness (Ra) decreased from 0.299 nm for room-temperature growth AlN buffer layer to 0.246 nm for 550 oC growth AlN buffer layer. In addition, the stoichiometric of 550 oC-AlN buffer layer was analyzed by X-ray photoelectron spectroscopy, XPS), the N 1s core level show two signal peaks at 400.0 eV and 405 eV respectively for Al-N and O-N bond. Finally, the 3-μm-thick GaN thin-film was deposited on AlN buffer layer/graphene/sapphire substrate by metal-organic chemical vapor deposition (MOCVD) system. From the measurement of full width at half maximum (FWHM) of (002) and (102) XRD rocking curve, the screw-type and edge-type threading dislocation density of GaN thin-film grown on 550 oC-AlN/graphene/sapphire substrate were estimated 3.92 109 and 2.28 108 cm-2, respectively. The E2(high) peak at 570.3 cm-1 in Raman spectrum indicated the GaN thin-film under a compressive stress. It is worth note that the 657 cm-1 appear a small peak in Raman spectra for all GaN samples in this study. In addition, the photoluminescence (PL) spectrum also found peak energy at 2.2 eV. The carbon element depth distribution analysis by second ion mass spectrometry (SIMS) confirms that the carbon from graphene layer would diffuse into GaN thin-film during 1100 oC growth process. The carbon concentration can be decreased from 3 1019 cm-3 for GaN/graphene/sapphire substrate to 2 1018 cm-3 for GaN grown on 550 oC-AlN/graphene/sapphire substrate. The electrical properties of GaN samples in this study were characterized by I-V measurement. The Ni/Au Schottky contact and Ti/Al Ohmic contact were deposition co-planar on GaN thin films by thermal evaporation. The high saturation current density for all samples in this study were higher than >104 A/cm2 result in a poor Schottky contact behavior. However, the saturation current density can be decreased about two-order which compared GaN thin films growth graphene/sapphire substrate w/o AlN buffer layer and with 550 oC-AlN buffer layer. The experimental results indicate that the AlN buffer layer can block carbon diffusion effectively and play a crucial role for preparing high material quality GaN grown on graphene/sapphire substrate.

    Contents 摘要 I Abstract II 致謝 IV Figure lists VIII Table lists XII Chapter I Introduction 1 1.1 Developments of display technology in recent years 1 1.2 Motivation and research objective 4 Chapter II Literature review 5 2.1 Recent progress of GaN based LEDs on various substrates 5 2.2 Direct growth graphene on substrate 12 2.3 GaN based LEDs grown on graphene buffer layer 19 Chapter III Experimental details 25 3.1 Preparation of graphene on sapphire substrate 26 3.2 Preparation of AlN buffer layer on graphene/sapphire substrate 27 3.4 Preparation of GaN thin-film on AlN/graphene/sapphire substrate 29 3.5 Preparation of metal contacts 29 3.6 Experiment and measurement instruments 32 Chapter IV Results and discussion 36 4.1 Growth and characterization of graphene on sapphire substrate 36 4.2 Growth and characterization of AlN buffer layer on graphene/sapphire substate 41 4.3 Growth and Characterizations of GaN thin-film on AlN/graphene/sapphire substrate 46 Chapter V Conclusions and future works 62 5.1 Conclusions 62 5.2 Future works 63 References 64

    [1] Tang C W, VanSlyke S A, Appl. Phys. Letters, 1987, 51(12): 913-915.
    [2] "Samsung, LG in legal fight over brain drain". The Korea Times. 2010-07-17. Archived from the original on 2010-07-21.
    [3] "Frost & Sullivan Recognizes Samsung SDI for Market Leadership in the OLED Display Market | Find Articles at BNET". Findarticles.com. 2008-07-17. Archived from the original on 2009-05-22.
    [4] “Sony claims development of world's first flexible, full-color OLED display”. Gizmo Watch. 2007-05-25. Archived from the original on 2007-10-17.
    [5] LG's 55-inch 'world's largest' OLED HDTV panel is official, coming to CES 2012.Archived 2011-12-26 at the Wayback Machine. Engadget (2011-12-25).
    [6] “Samsung increases Galaxy S8+ production”.theinvestor.com. Archived from the original on 2017-04-05.
    [7] “LG Display Unveils World’s First 77-inch Flexible and Transparent OLED Display”.ledinside.com. Archived from the original on 2017-06-23.
    [8] “LEDinside: Sony and Apple R&D Investments to Spur Micro-LED Displays Mass Production in 2018”. Archived from the original on 2016-08-02.
    [9] Nakamura S, Senoh M, Mukai T, Jpn. J. Appl. Phys, 1993, 32(1A): L8.
    [10] Zhu D, Wallis D J, Humphreys C J, Rep. Pro. Phys, 2013, 76(10): 106501.
    [11] Shin H Y, Kwon S K, Chang Y I, J. Cryst Growth, 2009, 311(17): 4167-4170.
    [12] Dorf R C 2004 The Electrical Engineering Handbook Series(Boca Raton, FL: CRC Press)
    [13] Wang W, Yang W, Wang H, J. Mater. Chem. C, 2014, 2(44): 9342-9358.
    [14] Ohta J, Fujioka H, Sumiya M, J. Cryst. Growth, 2001, 225(1): 73-78.
    [15] Liu Z, Wei T, Guo E, Appl. Phys. Lett, 2011, 99(9): 091104.
    [16] Liu Z, Wei T, Guo E, Appl. Phys. Lett, 2011, 99(9): 091104.
    [17] Nakamura S, Science, 1998, 281(5379): 956-961.
    [18] Taniyasu Y, Kasu M, Makimoto T, Nature, 2006, 441(7091): 325.
    [19] Wang H, Zhou S, Lin Z, Jpn. J. Appl Phys, 2013, 52(9R): 092101.
    [20] Su Y K, Chen J J, Lin C L, J. Cryst. Growth, 2009, 311(10): 2973-2976.
    [21] Zhu D, Wallis D J, Humphreys C J, Rep. Pro. Phys, 2013, 76(10): 106501.
    [22] Liu L, Edgar J H, Materials Science and Engineering: R: Reports, 2002, 37(3): 61-127.
    [23] Dadgar A, Strittmatter A, Bläsing J, Phys. Status. Solidi (c), 2003 (6): 1583-1606.
    [24] Kukushkin S A, Osipov A V, Bessolov V N, Medvedev B K, Nevolin V K and Tcarik K A, Rev. Adv. Mater, 2008, 17(1/2): 1-32.
    [25] Ishikawa H, Yamamoto K, Egawa T, J. Cryst. Growth, 1998, 189: 178-182.
    [26] Zhang J C, Jiang D S, Sun Q, Appl. Phys. Lett, 2005, 87(7): 071908.
    [27] Abe Y, Fujimori H, Watanabe A, Jpn. J. Appl. Phys, 2012, 51(3R): 035603.
    [28] Komiyama J, Abe Y, Suzuki S, J. Cryst. Growth, 2009, 311(10): 2840-2843.
    [29] Nishimura S, Matsumoto S, Terashima K, Phys. Status. solidi (c), 2004, 1(2): 238-241.
    [30] Lahreche H, Vennéguès P, Tottereau O, J. Cryst. Growth, 2000, 217(1): 13-25.
    [31] Raghavan S, Redwing J M, J. Appl. Phys, 2005, 98(2): 023514.
    [32] Kim M H, Do Y G, Kang H C, Noh D Y and Park S J, Appl. Phys. Lett. 79 2713
    [33] Dadgar A, Hempel T, Bläsing J, Phys. Status. Solidi (c), 2011, 8(5): 1503-1508.
    [34] Liu Y, Qin F, Zhang D, J. Cryst. Growth, 2013, 368: 92-96.
    [35] Choi J H, Zoulkarneev A, Kim S I, Nat. Photonics, 2011, 5(12): 763-769.
    [36] A. B. Kuzmenko, E. V. Heumen, F. Carbone, and D. V. D Marel, Phys. Rev. Lett, 100, 117401 (2008).
    [37] A. K. Geim, and K. S. Novoselov, Nature. Mater, 6, 183 (2007).
    [38] Shioyama H, Sakakihara H, Iwashita N, et al, J. Mater. Sci. Lett, 1994, 13(14): 1056-1057.
    [39] A. A. Balandin, S. Ghosh, W. Bao, Nano Lett, 2008, vol. 8, pp. 902-907
    [40] S. Ghosh, I. Calizo, D. Teweldebrhan, Appl. Phys. Lett, 2008, vol. 92, p. 151911
    [41] Stankovich S, Dikin D A, Piner R D, Carbon, 2007, 45(7): 1558-1565.
    [42] Obraztsov A N, Nat. Nano. technol, 2009, 4(4): 212-213.
    [43] Sun Z, Yan Z, Yao J, Nature, 2010, 468(7323): 549-552.
    [44] Wang Y, Zheng Y, Xu X, ACS nano, 2011, 5(12): 9927-9933.
    [45]A. Primo, P. Atienzar, E. Sanchez, J. M. Delgado and H. Garcı´a, Chem. Commun, 2012, 48, 9254–9256.
    [46] Lavorato C, Primo A, Molinari R, ACS Catalysis, 2014, 4(2): 497-504.
    [47] H.-J. Shin, W. M. Choi, S.-M. Yoon, G. H. Han, Y. S. Woo, E. S. Kim, S. J. Chae, X.-S. Li, A. Benayad, D. D. Loc, F. Gunes, Y. H. Lee and J.-Y. Choi, Adv. Mater, 2011, 23, 4392–4397.
    [48] J. Kwak, J. H. Chu, J.-K. Choi, S.-D. Park, H. Go, S. Y. Kim, K. Park, S.-D. Kim, Y.-W. Kim, E. Yoon, S. Kodambaka and S.-Y. Kwon, Nat. Commun, 2013, 3, 645.
    [49] W. Xiong, Y. S. Zhou, L. J. Jiang, A. Sarkar, M.-S. Masoud, Z. Q. Xie, Y. Gao, N. J. Ianno, L. Jiang and Y. F. Lu, Adv. Mater, 2013, 25, 630–634.
    [50] Z. Yan, Z. Peng, Z. Sun, J. Yao, Y. Zhu, Z. Liu, P. M. Ajayan and J. M. Tour, ACS Nano, 2011, 5, 8187–8192.
    [51] C.-Y. Su, A.-Y. Lu, C.-Y. Wu, Y.-T. Li, K.-K. Liu, W. Zhang, S.-Y. Lin, Z.-Y. Juang, Y.-L. Zhong, F.-R. Chen and L.-J. Li, Nano Lett, 2011, 11, 3612–3616.
    [52] Chen J, Guo Y, Jiang L, Adv. Mater. 2014, 26(9): 1348-1353.
    [53] Sun J, Gao T, Song X, J. Am. Chem. Soc, 2014, 136(18): 6574-6577.
    [53] Wei D, Lu Y, Han C,Angewandte Chemie International Edition, 2013, 52(52): 14121-14126.
    [54] D. Wei, L. Peng, M. Li, H. Mao, T. Niu, C. Han, W. Chen and A. T. S. Wee, ACS Nano, 2015, 9, 164–171.
    [55] P.-Y. Teng, C.-C. Lu, K. Akiyama-Hasegawa, Y.-C. Lin, C.-H. Yeh, K. Suenaga and P.-W. Chiu, Nano Lett, 2012, 12, 1379–1384.
    [56] D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim,S. T. Kim, H. Kim, Q. H. Ta, K. P. So, S. J. Yoon, S. J. Chae, Nature, 2012, 490, 235.
    [57] A. A. Balandin, S. Ghosh, W. Bao, Nano Lett, 2008, vol. 8, pp. 902-907
    [58] S. Ghosh, I. Calizo, D. Teweldebrhan, Appl. Phys.Lett, 2008, vol. 92, p. 151911
    [59] Chung K, Lee C H, Yi G C, Science, 2010, 330(6004): 655-657.
    [60]. X. Lu, H. Huang, N. Nemchuk, R. S. Ruoff, Appl. Phys.Lett. 75, 193 (1999).
    [61] K. Chung, C-H. Lee, G.-C. Yi, Physical B 330 (2010) 655.
    [62] Gupta P, Rahman A A, Hatui N, J. Cryst. Growth, 2013, 372: 105-108.
    [63] S. R-Clur, O. Briot, J.L. Rouvière, B. Gil, R.L. Aulombard, Mater. Sci. Eng., B, 50 (1997) 219

    QR CODE