簡易檢索 / 詳目顯示

研究生: 林春進
Chun-Chin Lin
論文名稱: 低電壓寬頻調整範圍壓控振盪器及負電阻壓控振盪器研究與設計
Study and Design of Low Voltage Wide Tuning Range VCO and Negative Differential Resistance VCO
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 張嘉男
none
許重傑
none
葉文昌
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 78
中文關鍵詞: 壓控振盪器
外文關鍵詞: VCO
相關次數: 點閱:294下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成二個部分,第一個部分是2.4GHz具有28%寬頻調整範圍壓控振盪器,使用TSMC 0.18um CMOS 1P6M製造。LC 共振槽包含二個中心抽頭電感及反轉模式可變電容,壓控振盪器有雙相位平衡的輸出且利用可變電容調整可變頻率。第二個部分是1.8GHz 負電阻壓控振盪器,使用TSMC 0.35um CMOS 2P4M製造。第二個部分用N類型MOS實現負電阻元件,透過負電阻我們可以創造一個適於RF 應用的壓控振盪器。經Cadence 中的Spectre RF 電路模擬軟體的驗證,朝著低相位雜訊和低功率消耗來設計。


    This thesis is mainly composed of two topics, the first is the 2.4-GHz wide-band voltage controlled oscillator (VCO) with 28% frequency tuning range, the chip is fabricated by the TSMC 0.18um 1P6M CMOS technology. The LC resonator consists of two tapped inductors and varactors formed of inversion mode MOS, the balanced VCO has two differential outputs and is tuned by NMOS varactors. The second is the 1.8-GHz VCO circuit made of negative differential resistance (NDR) device, the chip is fabricated by the TSMC 0.35um 2P4M CMOS technology. In the second part N-type nMOS devices are used to realize NDR device, by which we can construct an LC tank VCO suitable for RF application. From the simulation results with Cadence Spectre RF, the design has been done with the goal of low phase noise and low power consumption.

    Abstract(in Chinese)………………………………………………………………...….i Abstract(in English)………………………………………………………………...…ii Acknowledgement(in Chinese)…………….………………………………...….iii Contents……………………………………………………………………………….iv List of Figures………………………………………………………………………vi List of Tables……………………………………………………………………….viii Chapter 1 Introduction……………………………………………………………1 1.1 Background………………………………………………………1 1.2 Thesis Organization………………………………………………2 Chapter 2 Oscillator Design Concepts……………………………………………3 2.1 Oscillator theory……………………………….…………………3 2.2 Phase Noise………………………………………………………5 2.3 Q of an Oscillator………………………………………………...6 2.4 LC Oscillator…………………….……………………………….8 2.5 Colpitts Oscillator……………………………….………………11 2.6 Ring Oscillator………………………………………………….16 Chapter 3 Design of Voltage controlled Oscillators…………………...………...19 3.1 Fundamental of LC Tank VCO………………………...……….19 3.2 Negative-Gm Oscillators………………………………………..20 3.3 VCO Important Parameter………………………………………21 3.4 Varactors………………………………………………………...24 3.4.1 Junction Varactors………………………………………………24 3.4.2 MOS Varactors………………………………………………….25 3.5 Tuning in LC Oscillators………………………………………..32 3.6 Noise…………………………………………………………….34 3.6.1 Thermal Noise…………………………………………………..34 3.6.2 Flicker Noise(1/f noise)…………………………………………35 3.6.3 MOS Transistor Noise……………………..……………………36 3.6.4 Capacitor and Inductors Noise………………….………………39 3.7 Phase Noise Analysis…………………………………………...39 3.7.1 Phase Noise of Tuned Tank Oscillators…………………………39 3.7.2 Modeling of Phase Noise……………………………………….41 3.7.3 Resonator Noise………………………………………………...44 3.7.4 Tail Current Noise………………………………………………45 3.7.5 Differential Pair Noise…………………………………………..47 Chapter 4 A Technique For Increasing The Tuning Range of CMOS LC VCO..49 4.1 Introduction……………………………………………………..49 4.2 Circuit Design…………………………………………………..50 4.2.1 Tuned LC Tank………………………………………………….50 4.2.2 The Design of Low Phase Noise………………………………..51 4.2.3 LC VCO Design………………………………………………...52 4.2.4 The Design of Wide Tuning Range……………………………..54 4.3 Simulation and Measurement Results…………………………..56 Chapter 5 Design of 1.8-GHz Voltage Controlled Oscillators Using The Negative Differential Resistance Concept…………………………...63 5.1 Introduction……………………………………………………..63 5.2 Circuit Design…………………………………………………..64 5.3 Simulation and Measurement Results…………………………..70 Chapter 6 Conclusion……………………………………………………………77 References……………………………………………………………………………78

    [1] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [2] D. Ham, A. Hajimiri, “Concepts and Methods in Optimization of Integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896-909, June. 2001.
    [3] B. T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 1998.
    [4] B. David A. Johns and Ken Martin, Analog Integrated Circuit Design, John Wiley & Sons, INC. 1997.
    [5] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [6] P. Andreani, S. Mattisson, “On the Use of MOS Varactors in RF VCO’s,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, Jane. 2000.
    [7] R. L. Bunch, S. Raman, “Large-Signal Analysis of MOS Varactors in CMOS-Gm LC VCOs,” IEEE J. Solid-State Circuits, vol. 38, pp. 1325-1332, Aug. 2003.
    [8] B. GRAY, Analysis and Design of Analog Integrated Circuits, John Wiley&Sons, INC. 2001.
    [9] A. Hajimiri, T. H. Lee, “A general Theory of Phase Noise in Electrical Oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998.
    [10] M. Tiebout, F. Herzel, “Phase Noise in a Differential CMOS Voltage-Controlled Oscillator for RF Applications,” IEEE Trans. Circuits Syst., vol. 47, pp. 11-45, Jan. 2000.
    [11] J. J. Real, A. A. Abidi, “Physical Processes of Phase Noise in Differential LC Oscillators,” IEEE 2000 Custom Integrated Circuits Conference, pp. 569-572, May. 2000.
    [12] C. Samori, A. L. Lacaita, A. Zanchi, S. Levantino, and F. Torrisi, “ Impact of Indirect Stability on Phase Noise Performance of Eully-Integrated LC Tuned VCOs,” in European Solid-State Circuits conference, Duisburg, Germany, pp. 202-205, 1999.
    [13] H. Darabi, A. Abidi, “Noise in CMOS Mixer: A Simple Physical Model,” IEEE J. Solid-State Circuit, vol. 35, pp. 15-25, Jan. 2000.
    [14] C. Samori, A. L. Lacaita, F. Villa, and F. Zappa, “Spectrum folding and phase noise in LC tuned oscillators,” IEEE Trans. Circuits Syst., vol. 45, pp. 781-90, July. 1998.

    [15] H. chang, X. Cao, U. K. Mishra, R. A. York, “Phase noise in coupled oscillators theory and experiment,” IEEE Trans. Microwave Theory and Tech., vol. 45, pp. 604-615, May. 1997.
    [16] P. W. Lai, L. dobos, S. Long, “A 2.4GHz SiGe low phase-noise VCO using on chip tapped inductor,” IEEE, ESSIRC 2003, pp. 505-508, Sept. 2003.
    [17] C. Plett, G. Tarr, L. Wagner, “A low-voltage 40-GHz complementary VCO with 15% frequency tuning range in SOI CMOS technology,“ IEEE J. Solid-State Circuit, vol. 39, pp. 841-846, May. 2004.
    [18] P. Andreani, H. Sjoland, “Tail current noise suppression in RF CMOS VCOs,” IEEE J. Solid-State Circuits, vol.37, pp.342-348, March. 2002.
    [19] L. O. Chua, J. Yu; Y. Yu, “Bipolar-JFET-MOSFET Negative Resistance Devices,” IEEE Trans. Circuits Syst., vol. 32, pp. 46-61, Jan. 1985.
    [20] M. Bhattacharya, S. Kulkarni, A. Gonzalez, P. Mazumder, “A prototyping technique for large-scale RTD-CMOS circuits,” ISCAS 2000, pp.635-638, May. 2000.
    [21] M. Tiebout, “Physical scaling of integrated inductor layout and model and its application to WLAN VCO design at 11GHz and 17GHz,” ISCAS 2003. vol. 1, pp.637-640, May. 2003.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE