簡易檢索 / 詳目顯示

研究生: 陳韋旗
Wei-Chi Chen
論文名稱: 新式注入鎖定除頻器及電壓控制振盪器之設計
Design of Novel Injection-Locked Frequency Dividers and Voltage-Controlled-Oscillators
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
黃進芳
Jhin-Fang Huang
鄧恆發
Heng-Fa Teng
莊昀學
Yun-Hsueh Chuang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 139
中文關鍵詞: 四相位電壓控制振盪器電壓控制振盪器注入鎖定除頻器互補式金氧半導體
外文關鍵詞: QVCO, ILFD, VCO, CMOS
相關次數: 點閱:197下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓控振盪器與除頻器是頻率合成器電路中主要的電路之一。對壓控振盪器而言,低相位雜訊可避免相鄰雜訊訊號經由混波轉換的干擾。而振盪器的輸出則經由除頻器來達成降頻的工作,因此,除頻器需具有高頻操作,寬的操作頻寬及低功率消耗。
    首先,本論文呈現兩個除三直接注入鎖定除頻器。第一個電路裡,在電源1.6V量測到頻率可調範圍從2.17GHz到2.43GHz,注入功率大小為0dBm的訊號時鎖定範圍高達1.03GHz(14.9%),從6.41GHz到7.44GHz,功率消耗15.1mW,晶片面積為0.753 × 0.786mm2。第二個電路裡,在電源1.0V時其頻率可調範圍由7.10GHz至7.72GHz,操作在7.04 GHz 頻帶其注入鎖定後在10KHz偏移頻率下,此振盪器具有低於-111.52 dBc/Hz的相位雜訊表現,功率消耗為2.46mW。
    其次,我們呈現CMOS LC克萊柏電壓控制振盪器及串聯可調除二直接注入鎖定除頻器。在克萊柏電壓控制振盪器裡,電源1.4V時操作在5.297 GHz 頻帶在1Hz偏移頻率下的相位雜訊為-187.1 dBc/Hz。電路的功率消耗為3.78mW,可調電壓由0V至1.4V,可調範圍從4.58 GHz至5.62 GHz約為1.04 GHz,晶片面積為0.556 × 0.604 mm2。串聯可調除二直接注入鎖定除頻器電路裡,在電源1.5V時其頻率可調範圍由5.48GHz至6.36GHz,注入功率大小為0dBm的訊號時鎖定範圍高達3.39GHz(28.17%),從10.34GHz到13.73GHz,功率消耗4.94mW,晶片面積為0.574 × 0.573mm2。
    最後,一個利用動態門檻電壓電晶體技巧之新式四相位壓控振盪器亦呈現,此技巧將降低電源電壓以至減低功率的消耗。在電源1.5V時操作在4.94 GHz 頻帶在1Hz偏移頻率下的相位雜訊為-114.23 dBc/Hz,且FoM為-178.3 dBc/Hz.,功率消耗為8.1mW。可調電壓由0V至1.5V,可調範圍從4.49 GHz至5.16 GHz約為670 MHz,晶片面積為0.97 × 0.97 mm2。


    The key building blocks in the frequency synthesizer are the voltage controlled oscillator (VCO) and the high frequency divider circuit. Most importantly, low phase-noise is required to avoid corrupting the mixer-converted signal by close interfering tones for VCO circuit. The output of the VCO is divided down by the frequency divider which requires operating at high frequencies, wide operating range and lower power consumption.
    Firstly, this thesis describes two divider-by-3 LC-tank injection locked frequency dividers. In the first circuit, at the supply voltage of 1.6V, the divider free-running frequency is tunable from 2.17 to 2.43 GHz, and at the incident power of 0 dBm the locking range is about 1.03 GHz (14.9%), from the incident frequency 6.41 to 7.44GHz. The core power consumption is 15.1mW. The die area is 0.753 × 0.786 mm2. The second circuit measurement results show that at the supply voltage of 1.0 V, the free-running ILFD is tunable from 7.10 to 7.72 GHz. The locked output phase noise is -111.52 dBc/Hz at 10-KHz offset frequency from the7.04GHz. The core power consumption is 2.46 mW at the supply voltage of 1.0V.
    Then the CMOS LC-tank Clapp voltage controlled oscillator and series-tuned divider-by-2 injection locked frequency divider. In CMOS LC-tank Clapp VCO, at the supply voltage of 1.4V, the output phase noise of the VCO is -118.43 dBc/Hz at 1MHz offset frequency from the carrier frequency of 5.297 GHz, and the figure of merit is -187.1 dBc/Hz. The power consumption of VCO core is 3.78 mW. Tuning range is about 1.04 GHz, from 4.58 GHz to 5.62 GHz, while the control voltage was tuned from 0V to 1.4 V. The die area is 0.556 × 0.604 mm2. In series-tuned divider-by-2 ILFD, the measurement results show that at the supply voltage of 1.5 V, the divider free-running frequency is tunable from 5.48 to 6.36 GHz, and at the incident power of 0 dBm the locking range of the divide-by-2 ILFD is about 3.39 GHz (28.17%), from the incident frequency 10.34 to 13.73GHz. The core power consumption is 4.94 mW. The die area is 0.574 × 0.573 mm2.
    Finally, a novel quadrature VCO (QVCO) is proposed. By using dynamic threshold voltage MOS technique, it can reduce supply voltage and power consumption. At the supply voltage of 1.5V, the output phase noise of the QVCO is -114.23 dBc/Hz at 1MHz offset frequency from the carrier frequency of 4.94 GHz, and the figure of merit is -178.3 dBc/Hz. The power consumption of QVCO core is 8.1 mW. Tuning range is about 670 MHz, from 4.49 GHz to 5.16 GHz, while the control voltage was tuned from 0V to 1.5 V. The die area is 0.97 × 0.97 mm2.

    中文摘要 I Abstract III 誌謝 V Table of Contents VI List of Figures VIII List of Tables XIII CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 THESIS ORGANIZATION 4 CHAPTER 2 OVERVIEWS OF VOLTAGE-CONTROLLED OSCILLATORS 6 2.1 INTRODUCTION 6 2.2 THE OSCILLATOR THEORY 7 2.3 SORTS OF OSCILLATORS 11 2.3.1 RESONATORLESS OSCILLATORS 11 2.3.2 LC-TANK OSCILLATORS 14 2.4 DESIGN CONCEPTS OF VOLTAGE-CONTROLLED OSCILLATORS 16 2.4.1 VCO CHARACTERISTIC PARAMETERS 18 2.4.2 PHASE NOISE IN OSCILLATOR 20 2.5 Parallel RLC Tank 28 2.5.1 QUALITY FACTOR 29 2.5.2 INDUCTOR AND TRANSFORMER 32 2.5.3 CAPACITORS AND VARACTORS 49 2.5.4 RESISTORS 58 CHAPTER 3 DIVIDER-BY-3 LC-TANK INJECTION LOCKED FREQUENCY DIVIDER 60 3.1 INTRODUCTION 60 3.2 DIVIDE-BY-3 ILFD WITH INDUCTOR OVER MOS TOPOLOGY 62 3.2.1 DESIGN CONCEPT AND OPERATION OF ILFD BY 3 62 3.2.2 MEASUREMENT RESULTS 76 3.3 LOW-POWER DIVIDE-BY-3 ILFD 82 3.3.1 DESIGN CONCEPT OF LOW-POWER DIVIDE-BY-3 ILFD 82 3.3.2 MEASUREMENT RESULTS 84 CHAPTER 4 A CMOS LC-TANK CLAPP VOLTAGE CONTROLLED OSCILLATOR 88 4.1 INTRODUCTION 88 4.2 DESIGN CONCEPT AND OPERATION OF LC-TANK VCO 89 4.3 DESIGN OF THE TRANSFORMER 92 4.4 MEASUREMENT RESULTS 94 CHAPTER 5 DESIGN OF DIVIDER-BY-2 INJECTION LOCKED FREQUENCY DIVIDER 99 5.1 PRINCIPLE OF INJECTION LOCKED DIVIDER 100 5.1.1 LOCKING RANGE 102 5.2 DESIGN CONCEPT OF X-BAND SERIES-TUNED DIVIDER-BY-2 ILFD 105 5.3 MEASUREMENT RESULTS 109 CHAPTER 6 A CMOS COMPLEMENTARY COLPITTS QUADRATURE RING VCO 114 6.1 INTRODUCTION 114 6.2 TRADITIONAL QVCO CIRCUIT DESIGN 115 6.3 TRADITIONAL QUADRATURE CMOS VCO DESIGN 117 6.4 DESIGN CONCEPT OF CMOS QUADRATURE RING VCO 122 6.4.1 DYNAMIC THRESHOLD VOLTAGE MOS (DTMOS) 124 6.5 MEASUREMENT RESULTS 126 CHAPTER 7 CONCLUSION 131 REFERENCES 134

    [1] N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May 1992.
    [2] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
    [3] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [4] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
    [5] J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
    [6] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
    [7] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [8] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [9] A. Hajimiri and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
    [10] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [11] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [12] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997
    [13] P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
    [14] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [15] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June 1989.
    [16] P. Andreani, and S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 905-910, June 2000.
    [17] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, pp. 1170-1174, July 2004.
    [18] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microwave Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
    [19] H. Hashemi, Integrated Concurrent Multiband Radios and Multiple Antenna Systems, PhD dissertation, California Institute of Technology, 2003.
    [20] H. Wu and L. Zhang, “A 16-to-18GHz 0.18-μm epi-CMOS divide-by-3 injection-locked frequency divider,” in 2006 ISSCC, pp.602 – 603.
    [21] Jeong, S. Kim, W. Choi, H. Noh, K. Lee, K.-S. Seo, and Y. Kwon, “W-band divide-by-3 frequency divider using 0.1-μm InAlAs/InGaAs metamorphic HEMT technology,” Electronics Letts., pp. 1005 – 1006, Sep.2005.
    [22] S. Kang, B. Choi, and B. Kim, “Linearity analysis of CMOS for RF application,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 972–977, Mar. 2003.
    [23] S. Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5-GHz CMOS VCOs: Impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003–1011, Aug. 2002.
    [24] B. Razavi, “Heterodyne phase locking: a technique for high-frequency division,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2007, pp. 428–429.
    [25] F. Zhang, and P. R. Kinget,, “Design of components and circuits underneath integrated inductors,” IEEE J.Solid-State Circuits, vol. 41, no.10, pp. 2265–2271, Oct.2006.
    [26] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp.1415 – 1424, Sep. 2004.
    [27] Y. Papananos and N. Nastos, “Inductor over MOSFET:Operation and theoretical study of a CMOS RF three-dimensional structure,” PROC. 24th International conference on microelectronics, May 2004, pp. 525–529.
    [28] A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation,” IEEE J. Solid-State Circuits, vol. 39, pp. 1425-1433, Sept. 2004.
    [29] P. Wambacq and W. Sansen, Distortion Analysis of Analog Integrated Circuits, Dor drecht: Kluwer, 1998.
    [30] R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. Solid-State Circuits, vol. 12, no. 12, pp. 1728–1736, Dec. 2002.
    [31] C.-Y. Cha and S.-G. Lee, “A complementary Colpitts oscillator in CMOS technology,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 3, pp. 881 -887, Mar. 2005.
    [32] S.-H. Lee, Y.-H. Chuang, S.-L. Jang and C.-C. Chen, “Low-phase noise Hartley differential CMOS voltage controlled oscillator,” IEEE Microwave Wireless Compon. Lett., vol. 17, no.2, pp. 145-147, Feb. 2007.
    [33] M. Soyuer, J. N. Burghartz, H. A. Ainspan, K. A. Jenkins, P. Xiao, A. R. Shahani, M. S. Dolan, and D. L. Harame, “An 11-GHz 3-V SiGe voltage controlled oscillator with integrated resonator,” IEEE J. Solid-State Circuits,, vol. 32, no. 9, pp. 1451–1454, Sep. 1997.
    [34] S. Shekhar, S. Aniruddhan and D.J. Allstot, “A fully-differential CMOS Clapp VCO for IEEE 802.11a applications,” in Proc. Int. Symposium on Circuits and Systems, 2006, pp. 3241-3244.
    [35] G. De Astis, D. Cordeau, J.-M. Paillot, L. Dascalescu, “A 5-GHz fully integrated full PMOS low-phase-noise LC VCO,” IEEE J. Solid-State Circuits, vol. 40, no. 10, pp.2087-2091, Oct. 2005.
    [36] M.-D. Tsai, Y.-H. Cho, and H. Wang, “A 5-GHz low phase noise differential colpitts CMOS VCO,” IEEE Microwave Wireless Compon. Lett., vol. 15, no 5, pp. 327-329, May 2005.
    [37] C. M. Hung, B. Floyd, and K. K. O, “Fully integrated 5.35-GHz CMOS VCO and a prescaler,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 1, pp. 17–22, Jan. 2001.
    [38] A. Jerng, C. G. Sodini, “The impact of device type and sizing on phase noise mechanisms,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 360-369, Feb. 2005.
    [39] Y.-H. Chuang, S.-L. Jang, S.-H. Lee, R.-H. Yen, and J.-J. Jhao, “5-GHz low power current reused balanced CMOS differential armstrong VCOs,” IEEE Microwave Wireless Compon. Lett., vol. 17, no. 2, pp. 139-141, Feb. 2007.
    [40] B. Min and H. Jeong, “5-GHz CMOS LC VCOs with wide tuning ranges,” IEEE Microwave Wireless Compon. Lett., vol. 15, no. 5, pp. 336-338, May 2005.
    [41] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7-μm CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [42] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [43] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [44] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [45] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [46] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25-μm standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [47] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35-μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [48] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [49] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [50] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25-μm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [51] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon- based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [52] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [53] C. F. Lee, S. L. Jang, and M. H. Juang, “A wide locking range differential Colpitts injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett, VOL. 17, NO. 11, NOVEMBER 2007
    [54] L. Hung Lu and J. C. Chien, “A wide-band CMOS injection-locked ring oscillator,” IEEE Microw. Wireless Compon. Lett, VOL. 15, NO. 10, OCTOBER 2005
    [55] S. L. Jang, M. H. Suchen, and C. F. Lee, “Colpitts injection-locked frequency divider implemented with a 3-D helical transformer,” IEEE Microw. Wireless Compon. Lett, VOL. 18, NO. 6, JUNE 2008
    [56] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature,” IEEE J. Solid-State Circuits, vol. 37, no. 7, pp. 845–851, Jul. 2002.
    [57] Y. H. Chuang, S. H. Lee, R. H. Yen, S. L. Jang, J. F. Lee, and M. H. Juang, “A wide locking range and low voltage CMOS direct injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
    [58] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, pp. 873–887, June 2001.
    [59] H. Matsuoka and T. Tsukahara, “A 5-GHz frequency-doubling quadrature modulator with a ring-type local oscillator,” IEEE J. Solid-State Circuits, vol. 34, pp. 1345–1348, Sept. 1999.
    [60] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, pp. 392–393, Feb. 1996.
    [61] J.-H. Chang and C.-K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 724-726, Oct. 2005.
    [62] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148–1154, Jul. 2003.
    [63] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, and M.-H. Juang, “A low-voltage quadrature CMOS VCO based on voltage-voltage feedback topology,” IEEE Microw. Wireless Compon. Lett., pp.696-698, Dec. 2006
    [64] S.-L. J, C.-F. Lee, “A low voltage and power LC VCO implemented with dynamic threshold voltage MOSFETS,” IEEE Microwave Wireless Compon. Lett., vol. 17, no. 5, May. 2007.
    [65] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd ed. New York: Oxford Univ. Press, 1999.
    [66] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.

    QR CODE