簡易檢索 / 詳目顯示

研究生: 賴泓瑋
Hung-Wei Lai
論文名稱: 增強式注入寬鎖定三倍頻器與電流再利用除十六注入寬鎖定除頻器設計
Design of Injection-locked Frequency Tripler with Enhanced Wide Locking Range and Current-Reused Divide-by-16 Wide Injection-Locked Frequency Divider
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 莊敏宏
Miin-Horng Juang
宋峻宇
Jiun-Yu Sung
李後璋
Hou-Zhang Li
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 101
中文關鍵詞: 除頻器倍頻器壓控振盪器頻率合成器混頻器
外文關鍵詞: Frequency divider, Frequency Multiplier, VCO, PLL, ILFD, mixer
相關次數: 點閱:195下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在RF射頻收發機中,頻率合成器扮演著重要的角色,其內部包含了相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、壓控振盪器(VCO)、除頻器(FD)、倍頻器(FM)然而頻率合成器可應用在頻率偏移調變(FSK)。因為要追求低功耗、低相位雜訊與寬鎖定範圍的除頻器和倍頻器特性,所以本篇論文呈現出各種高性能的注入鎖定倍頻器(ILFM)和注入鎖定除頻器(ILFD)的設計。

    第一部分設計由 0.18 μm BiCMOS 工藝製造的 LC-tank 注入鎖定三倍頻器 (ILFT),描述了 ILFT 的電路設計、工作原理和測量結果。差分輸入輸出 ILFT 電路由一次諧波注入鎖定振盪器 (ILO) 和一個三倍頻的混頻器所組成,用於 ILO 提供注入信號。ILO 的自由振盪頻率約為 4.6 GHz。在 9.52 mW 的直流功耗和 0 dBm 注入強度下,鎖定範圍是注入頻率 1.12GHz 到 1.8GHz,以提供頻率從 3.36GHz 到 5.4GHz (46.57%) 的輸出信號源。整個晶片佔地面積小,1.1980×1.2 mm2。使用先進設計系統(ADS)模擬顯示電感的峰值增加了注入鎖定三倍頻器範圍。此外,此三倍頻器也可以使用於低頻段或高頻段去應用於解調器中的頻率對振幅轉換器。

    設計的第二部分 CMOS 除十六注入鎖定除頻器 (ILFD) 是由一個除四電流模式邏輯 (CML) 的除頻器 (FD) 堆疊在於 LC 的電容交叉耦合振盪器上除四的 ILFD。 TSMC 0.18 μm 1P6M CMOS 工藝中的除十六 ILFD 在 12.5mW 的功耗和 0 dBm 的注入信號功率 Finj 下具有 10.76 GHz 至 12.6 GHz 的鎖定範圍 (15.75%)。除十六ILFD 使用具有寬鎖定範圍的 CML FD 追踪來自 LC ILFD 輸出的輸入頻率,並佔用 1.2×1.198 mm2 的小面積。本章ILFD 還可以使用於除八和除二十四的模式下運用。

    設計的第三部分是研究對於 TSMC 0.18 μm 3P6M BiCMOS 工藝實現的諧波混頻器 LC 型除四注入鎖定除頻器 (ILFD) 進行仿真研究。除四 ILFD 使用混合三諧振 LC 共振腔,該共振腔由雙諧振分佈式螺旋電感和雙諧振變壓器耦合合併而成。在 4.27 mW 的功耗下,自由震盪振盪頻率為 2.78 GHz。在輸入功率為 0 dBm 時,鎖定範圍為 3.9 GHz (32.36%),從 10.1GHz 到 14 GHz。晶片面積為 1.006 ×0.925 mm2。

    最後部分設計電流再利用達靈頓放大器倍頻電路。達林頓放大器疊加在倍頻器上。電流再利用電路接受來自壓控振盪器 (VCO) 的輸入信號。CMOS 21GHz VCO倍頻集成電路採用TSMC 0.18 μm 1P6M CMOS工藝製造,頻率可調範圍為20.9 GHz至22.39 GHz,功耗為14.756 mW。整個芯片只佔1.180×1.103 mm2的小面積。


    In the RF transceiver, frequency synthesizer plays an important role, its blocks include Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF), Voltage Controlled Oscillator (VCO), Frequency Divider (FD), Frequency Multiplier (FM) and frequency synthesizer can be used as a Frequency Shift Keying demodulate (FSK). In order to pursue low-power, low phase noise and wide locking range include of Divider and Multiplier, so this thesis presents the design of high performance Injection-Locked Frequency Multiplier (ILFM) and Injection-Locked Frequency Divider (ILFD).
    The first part of design LC-tank Injection Locked Frequency Tripler (ILFT) fabricated in 0.18 μm BiCMOS process and it describes the circuit design, operation principle and measurement results of the ILFT. The differential input and output ILFT circuit is made of a first-harmonic injection-locked oscillator (ILO) and a mixer-type frequency tripler to supply an injection signal to the ILO. The free-running frequency of the ILO is around 4.6 GHz. At the DC power consumption 9.52 mW and at the incident power of 0 dBm, the locking range is from the incident frequency 1.12GHz to 1.8 GHz to provide an output signal source from the frequency 3.36 GHz to 5.4 GHz (46.57%). The whole chip occupies a small area of 1.1980×1.2 mm2. Simulation shows the inductive peaking increases the tripler locking range. In addition, this frequency multiplier can be applied to a frequency to amplitude converter in a demodulator by using the low-band or high-band alone.
    The second part of design CMOS divide-by-16 Injection-Locked Frequency Divider (ILFD) with a divide-by-4 Current-Mode Logic (CML) Frequency Divider (FD) stacked on a capacitive cross-coupled oscillator used as an LC divide-by-4 ILFD. The divide-by-16 ILFD in the TSMC 0.18 μm 1P6M CMOS process has a locking range from 10.76 GHz to 12.6 GHz (15.75%) at the power consumption of 12.5mW and an external injected signal power Pinj of 0 dBm. The varactor-less divide-by-16 ILFD uses the CML FD with wide locking range to track the input frequency from the LC ILFD output, and occupies a small area of 1.2×1.198 mm2. The ILFD also can operate in the divide-by-8 and divide-by-24 modes.
    The third part of research carries out the simulation study on a harmonic mixer LC-type divide-by-4 Injection-Locked Frequency Divider (ILFD) implemented in the TSMC 0.18 μm 3P6M BiCMOS process. This divide-by-4 ILFD uses a hybrid triple-resonance LC-resonator merged of a dual-resonance distributed spiral inductor resonator, and a dual-resonance transformer-coupled resonator. At the power consumption of 4.27 mW, the free-running oscillation frequency is 2.78 GHz. At the incident power of 0 dBm, the locking range is 3.9 GHz (32.36%) from 10.1 to 14 GHz. The die area is 1.006 ×0.925 mm2.
    The final part of design current-reused Darlington-frequency doubler circuit. The Darlington amplifier stacks on a frequency doubler. The current-reused circuit accepts an input signal from a voltage-controlled-oscillator (VCO). The CMOS 21GHz VCO-frequency doubler integrated circuit is fabricated in the TSMC 0.18 μm 1P6M CMOS process, the frequency source is tunable from 20.9 GHz to 22.39 GHz at the power consumption of 14.756 mW. The whole chip occupies a small area of 1.180×1.103 mm2.

    摘要 I Abstract III 致謝 V Table of Contents VI List of Figures VIII List of Tables XV Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 3 Chapter 2 Principles and Design Considerations of Voltage Controlled Oscillators 5 2.1 Introduction 5 2.2 The Oscillators Theory 7 2.2.1 Feedback Oscillators (Two port) 8 2.2.2 Negative Resistance and Resonator (One port) 10 2.3 Category of Oscillators 13 2.3.1 Ring Oscillator 13 2.3.2 LC-Tank Oscillator 18 2.4 Design Concepts of Voltage-Controlled Oscillator 22 2.4.1 Parameters of a Voltage-Controlled Oscillator 23 2.4.2 Phase Noise 25 2.4.3 Quality Factor 31 Chapter 3 Design of Injection Locked Frequency Divider ……………………….33 3.1 Introduction 33 3.2 Principle of Injection Locked Frequency Divider 34 3.3 Locking Range 36 Chapter 4 Injection-locked Frequency Tripler with Enhanced Locking Range ………………………………………………………………………………..39 4.1 Introduction 39 4.2 Circuit Design 40 4.3 Measurement and Discussion 42 Chapter 5 Current-Reused Divide-by-16 Injection-Locked Frequency Divider ………………………………………………………………………………..51 5.1 Introduction 51 5.2 Circuit Design 52 5.3 Measurement and Discussion 59 5.4 Voltage-mode ÷16 ILFD 61 Chapter 6 Simulation of Injection-Locked Frequency Dividers Using AC-Voltage Switchable Transformer-Couple Resonator 68 6.1 Introduction 68 6.2 Circuit architecture of the ILFD 70 6.3 Circuit Simulation of the ILFD 71 Chapter 7 Current-Reused Frequency Doubler and Darlington Amplifier 80 6.1 Introduction 80 6.1 Circuit Design 81 6.1 Measure and Discussion 86 Chapter 8 Conclusions 92 References 94

    References
    [1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
    [2] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
    [3] B. Razavi, Design of Integrated Circuits for Optical Communications, Mc Graw Hill.
    [4] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [5] T. H. Lee, The design of CMOS radio frequency integrated circuits, Cambridge University Press, 1998.
    [6] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [7] C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155-158, Dec. 1996.
    [8] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [9] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
    [10] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [11] B. Razavi, Design of Integrated Circuits for Optical Communications, Mc Graw Hill.J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [12] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [13] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [14] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [15] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [16] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [17] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [18] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [19] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [20] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [21] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [22] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [23] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [24] Y. Zheng and C. E. Saavedra, "A bipolar MMIC frequency tripler," IEEE Int. Carib. Conf. Devices, Circuits, and Systems, Cancun, Mexico, April 2008.
    [25] J. E. Johnson, G. R. Branner, and J.-P. Mima, “Design and optimization of large conversion gain active microwave frequency triplers,” IEEE Microw.Wireless Compon. Lett., vol. 15, no. 7, pp. 457-459, July 2005.
    [26] M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol.56, no. 8, pp. 1869-1878, Aug. 2008.
    [27] C.-N. Kuo, and T.-C. Yan, “A 60 GHz injection-locked frequency tripler with spur suppression,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 10, pp. 560–562, Oct. 2010.
    [28] Zhiming Chen et al., "An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65nm CMOS," IEEE MTT-S International Microwave Symposium Digest (IMS), pp.776-779, 23-28 May 2010
    [29] S.-L. Jang, J.-J. Chen, C.-C. Liu and M.-H. Juang,” Injection-locked frequency tripler with series-tuned resonator in 0.13 μm CMOS technology,” Microw. Optical Tech. Lett., pp.1107-1110, May, 2010.
    [30] S. Shin, D. R. Utomo, H. Jung, S.-K. Han, J. Kim, S.-G. Lee, "Wide locking-range frequency multiplier by 1.5 employing quadrature injection-locked frequency tripler with embedded notch filtering", IEEE Trans. Microw. Theory Tech., vol. 67, no. 12, pp. 4791-4802, 2019.
    [31] C.-C. Chen, J.-W. Wu and T.-F. Chiao “Dual-injection sub-harmonic injection-locked frequency tripler,” IEEE Microwave Conference Proceedings, pp. 1214-1216, Dec. 2012
    [32] L. Iotti, G. LaCaille and A. M. Niknejad, "A 57–74-GHz tail-switching injection-locked frequency tripler in 28-nm CMOS," in IEEE Solid-State Circuits Letters, vol. 2, no. 9, pp. 115-118, Sept. 2019.
    [33] H. Huang, M. Wu, Y. Lin, T. Huang and J. Tsai, "A 3.7 mW 75–87-GHz injection-locked frequency tripler using bandwidth-enhanced transformer-coupled topology for automatic radar applications," European Microwave Conf. (EuMC), Paris, France, Sept. 2015, pp. 399–402.
    [34] Y.-L. Yeh and H.-Y. Chang, “A W-band wide locking range and low dc power injection-locked frequency tripler using transformer coupled technique,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 2, pp. 860–870, Feb. 2013.
    [35] J. Zhang, H. Liu, C. Zhao, and K. Kang, “A 22.8-to-43.2GHz tuning-less injection-locked frequency tripler using injection-current boosting with 76.4% locking range for multiband 5G applications,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 370–372.
    [36] C.-H. Tu, S.-W. Chen, H.-W. Kao and J.-W. Wu, " Mixer-based injection-locked frequency tripler," 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Seoul, 2017, pp. 141-143.
    [37] Hsiu-An Yeh, “Novel ultra low power ILFM by 3,” unpublished work:Report in Chip-Implementation-Center shuttle U90-99A-10, 2010.
    [38] L. Zhang, D. Karasiewicz, B. Cifctioglu, and H. Wu, "A 1.6-to-3.2/4.8 GHz dual-modulus injection-locked frequency multiplier in 0.18ȝmdigital CMOS," IEEE Radio-Frequency Integrated Circuits (RFIC) Symposium, pp.427-430, June 2008.
    [39] S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang,” A Dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,”IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818,Dec. 2009.
    [40] Wen-Cheng Lai, Sheng-Lyang Jang and Jheng-Wei Jhuang, “The Three Resonances Injection- Locked Frequency Multiplier,” IEEE Microw. Wireless Compon. Lett pp.3, vol. 51, no. 23, 15 Oct. 2015.
    [41] Z. Zong, M. Babaie, and R. B. Staszewski, “A 60 GHz frequency generator based on a 20 GHz oscillator and an implicit multiplier,” IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1261–1273, May 2016.
    [42] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
    [43] S.-L. Jang, W.-C. Lai, G.-Z. Li, and Y.-W. Chen,” High even-modulus injection-locked frequency dividers,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 12, pp. 5069-5079, Dec. 2019.
    [44] S.-L. Jang, T.-C. Kung and C.-W. Hsue," Wide-locking range Divide-by-4 injection-locked frequency divider using linear mixer approach," IEEE Microw. Wireless Compon. Lett., vol. 27, no. 4, pp.398-400, 2017.
    [45] S. Cheng, H. Tong, J. S. Martinez and A. I. Karsilayan “A fully differential low-power divide-by-8 injection-locked frequency divider up to 18 GHz,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 583-591, Mar. 2007.
    [46] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig.,pp. 2472–2481, Feb. 2006.
    [47] S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
    [48] S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang," A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider, "Int. J. Electronics., vol. 98, no. 4, pp. 521-527, April 2011.
    [49] S. Cheng, H. Tong, J. S. Martinez and A. I. Karsilayan “A fully differential low-power divide-by-8 injection-locked frequency divider up to 18 GHz,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 583-591, Mar. 2007.
    [50] S.-L. Jang, S.-J. Jian and C.-W. Hsue," Wide-band divide-by-4 injection-locked frequency divider using harmonic mixer," IEEE Microw. Wireless Compon. Lett., 924-926, Oct. 2017.
    [51] K. Takatsu et al., ‘‘A 60-GHz 1.65mW 25.9% locking range multi-order LC oscillator based injection locked frequency divider in 65nm CMOS,’’ in Proc. IEEE Custom Integr. Circuits. Conf., Sep. 2010, pp. 1–4.
    [52] S.-L. Jang, and C.-C. Fu. ” Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers’, Analog Integr Circ Sig Process, vol. 78, issue 2, pp. 523–528, Feb. 2014., Feb. 2014.
    [53] S.-L. Jang, J.-F. Huang and F.-B. Lin,” Wide-locking range LC-tank divide-by-4 injection-locked frequency divider using transformer feedback,” Int. J. RF and Microwave Computer-Aided Engineering, vol.25, no. 7, pp.557–562, 2015.
    [54] S.-L.Jang, T.-C. Kung and C.-W. Hsue," Wide-locking range divide-by-4 injection-locked frequency divider using linear mixer approach," IEEE Microw. Wireless Compon. Lett., vol. 27, no. 4, pp.398-400, 2017.
    [55] J. Zhang, Y. Cheng, C. Zhao, Y. Wu, and K. Kang, “Analysis and design of ultra-wideband mm-wave injection-locked frequency dividers using transformer-based high-order resonators,” IEEE J. Solid-State Circuits, vol. 53, no. 8, pp. 2177–2189, Aug. 2018.
    [56] C.-W. Chang, S.-L. Jang, C.-W. Huang, and C.-C. Shin, “Dual resonance LC-tank frequency divider implemented with switched varactor bias,” in Proc. IEEE Int. Symp. VLSI Design, Autom. Test, Apr. 2011, pp. 1–4.
    [57] S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang, “Quadrature injection-locked frequency dividers using dual resonance resonator,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 37–39, Jan. 2011.
    [58] S. Jang, W. Lai, J. Syu and B. Shih, "A CMOS triple-band 2:1 injection-locked frequency divider with inductive coupling resonator," 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, 2018, pp. 482-484.
    [59] W. -C. Lai, S. -L. Jang, B. -S. Shih and C. -Y. Huang, " Frequency divider using hybrid transformer-based and resistively distributed resonator," 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, Singapore, 2019, pp. 417-419.
    [60] S.-L. Jang, and C.-Y. Lin,” Wide-locking range class-C injection-locked frequency divider,” Electron. Lett., vol. 50, 23, pp.1710-1712, 2014.
    [61] W. -C. Lai, S. -L. Jang, F. -W. Chen and S. -C. Lin, "Divide-by-4 Injection-Locked Frequency Divider (ILFD) Using Stacked 2:1 ILFDs," 2019 12th Global Symposium on Millimeter Waves (GSMM), 2019, pp. 96-98,
    [62] W. Lai and S. Jang, "Current-Reuse LC Divide-by-8 Injection-Locked Frequency Divider," 2019 32nd IEEE International System-on-Chip Conference (SOCC), 2019, pp. 488-491M. Acar, D. Leenaerts, and B. Nauta, “A wide-band CMOS injection locked frequency divider,” IEEE Radio Frequency Integrated Circuits Symp., Dig , Jun. 2004. pp. 211–214
    [63] A. Musa, K. Okada and A. Matsuzawa, "A 20GHz ILFD with locking range of 31% for divide-by-4 and 15% for divide-by-8 using progressive mixing," IEEE Asian Solid-State Circuits Conference 2011, 2011, pp. 85-88,
    [64] J. Oh, J. Jang, C. Kim, and S. Hong, “A W-band high-efficiency CMOS differential current-reused frequency doubler,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 5, May 2015, pp. 307–309.
    [65] C.-W. Kuo, H.-K. Chiou, and H.-Y. Chung, “An 18 to 33 GHz fully integrated Darlington power amplifier with Guanella-type transmission line transformers in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 12, Dec. 2013, pp. 668–670.

    QR CODE