簡易檢索 / 詳目顯示

研究生: 張永鈞
Yong-Jun Chang
論文名稱: X波段LC單級注入非線性注入鎖定倍頻器與氮化鎵製程注入鎖定倍頻器
X-BAND LC SINGLE-STAGE INJECTION NONLINEAR INJECTION-LOCKED FREQUENCY DOUBLER AND GAN INJECTION-LOCKED FREQUENCY DOUBLER
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 莊敏宏
Miin-Horng Juang
徐世祥
Shih-Hsiang Hsu
宋峻宇
Jiun-Yu Sung
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 105
中文關鍵詞: 頻率倍頻器注入鎖定八字電感壓控振盪器氮化鎵
外文關鍵詞: Frequency Multiplier, Injection-Locked, 8-shaped Inductor, Voltage-Controlled Oscillator, Gallium Nitride
相關次數: 點閱:312下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著物聯網的蓬勃有越來越多的設備,所有的頻段規格都被規範在IEEE 802.11標準中,故精準地升頻並避免雜訊干擾以獲得正確、穩定地傳輸勢在必行。無線通訊速度在近十年更是以倍數成長,利用壓控振盪器(Voltage-Controlled Oscillator, VCO)升頻並用倍頻器(Multiplier)選擇頻率是較有效率的選擇。本論文第一、二顆晶片使用台積電(Taiwan Semiconductor) 0.18 微米雙極互補式金氧半場效電晶體技術製程製造,第三顆晶片則是以穩懋半導體(WIN semiconductors) 0.25 微米空乏型高電子遷移率電晶體(pHEMT)製程製造,設計應用於特定頻率的倍頻器。
    第一部分使用SiGe異質電晶體非線性差動注入結合電感使內部保留奇次諧波,再將差動訊號混合至兩倍並獲得兩倍頻率。三倍頻在注入功率0分貝毫瓦與功率消耗7.6 毫瓦下,鎖定輸出頻率範圍介於1.77G至2.52G赫茲;六倍頻在注入功率0分貝毫瓦與功率消耗8毫瓦狀態下,鎖定輸出頻率範圍介於3.84G至5.04G赫茲,此晶片面積占用1.387平方毫米。第二部分使用互補式金屬氧化物電晶體,基於第一部分的設計,在電路尾部提供一偶次諧波阻抗,使頻率迴授進主電路,讓五倍頻率更少雜訊增加穩定度,進一步驗證理論推斷。五倍頻在注入功率0分貝毫瓦與消耗功率9.8毫瓦下,鎖定頻率在7.28G至8.22G赫茲,此晶片面積占用1.18平方毫米。第三部分採用穩懋半導體氮化鎵技術設計的倍頻器,採用互推式和非線性注入設計,當輸入功率0 分貝毫瓦與功耗316毫瓦,輸出頻率從9.505G到10.4542 G赫茲是連接三組由單一電感提供之阻抗,晶片面積為 1.0×1.0 平方毫米。 10.32 G赫茲載波的 1M赫茲偏移頻率處鎖定相位噪聲為 -128.94 dBc/Hz。


    Nowadays, with AIoT technology more and more devices are needed, and all the frequency band specifications are also in the IEEE 802.11 standard specification, so it is imperative to accurately upconvert and avoid noise interference to obtain correct and stable transmission. The speed of wireless communication has grown exponentially in the past ten years. It is more efficient to use a Voltage-Controlled Oscillator (VCO) to increase the frequency and use a Multiplier to select the frequency. The first and second chips in this thesis are manufactured by Taiwan Semiconductor's 0.18-micrometers bipolar complementary MOSFET technology, and the third chip is WIN semiconductors' 0.25-micrometers depletion type High-Electron Mobility Transistor (pHEMT) process, frequency multipliers are designed for specific frequencies.
    The first part uses SiGe hetero-transistor nonlinear differential injection combined with inductors to keep odd harmonics internally, and then push the differential signal to twice and get twice the frequency. The multiple-by-3 locked the output frequency range from 1.77G to 2.52G Hz when the injection power is 0 dBm and the power consumption is 7.6 mW. The multiple-by-6 locked output frequency range is from 3.84G to 5.04G Hz, and the chip area occupies 1.387 mm2.
    The second part uses complementary metal oxide transistors to provide an even-order harmonic impedance at the tail of the circuit, so that the frequency is fed back into the main circuit, so that frequencies multiple-by-5 has less noise and increases stability, which further verifies the theoretical inference. The quintuple frequency is locked at 7.28G to 8.22G Hz under the injection power of 0 dBm and the power consumption of 9.8 mW, and the chip area occupies 1.18 mm2.
    The third part adopts the frequency multiplier designed by WIN semiconductor GaN technology, using push-push and nonlinear shunt injection mixer design, the input power is 0 dBm, the power consumption is 316 mW, the output frequency is from 9.505 GHz to 10.4542 GHz, and the chip area is 1.0×1.0 mm2. Locked phase noise at a 1 MHz offset frequency of a 10.32 GHz carrier is -128.94 dBc/Hz.

    摘要 I ABSTRACT II 致謝 III CONTENTS IV LIST OF FIGURES VI LIST OF TABLES VIII CHAPTER 1 BACKGROUND & MOTIVATION 1 1.1 INTRODUCTION 1 CHAPTER 2 OVERVIEW OF VOLTAGE-CONTROLLED OSCILLATOR 4 2.1 INTRODUCTION 4 2.2 THEORY OF OSCILLATORS 6 2.2.1 FEEDBACK OSCILLATORS (TWO PORTS) 7 2.2.2 NEGATIVE RESISTANCE AND RESONATOR (ONE PORT) 9 2.3 CATEGORY OF OSCILLATORS 11 2.3.1 RING OSCILLATOR 11 2.3.2 LC-TANK OSCILLATOR 12 2.4 PERFORMANCE INDICATORS OF VOLTAGE-CONTROLLED OSCILLATOR 16 2.4.1 TUNING RANGE 16 2.4.2 TUNING SENSITIVITY 16 2.4.3 PHASE NOISE 17 2.4.4 QUALITY FACTOR 20 2.5 PASSIVE COMPONENTS DESIGN IN VCO 21 2.5.1 INDUCTOR DESIGN 21 2.5.2 TRANSFORMER DESIGN 28 CHAPTER 3 INJECTION LOCKED FREQUENCY SIXTUPLER IMPLEMENTED BY BICMOS PROCESS 32 3.1 INTRODUCTION 32 3.2 CIRCUIT DESIGN 33 3.2.1 ACTIVE CIRCUIT 34 3.2.2 PASSIVE COMPONENTS 37 3.3 SIMULATIONS AND MEASUREMENTS 40 3.3.1 INJECTION LOCKED ×3/×6 FREQUENCY MULTIPLIER 41 3.3.2 INJECTION LOCKED ×5/×10 FREQUENCY MULTIPLIER 50 CHAPTER 4 SINGLE-STAGE INJECTION-LOCKED FREQUENCY QUINTUPLER IN CMOS PROCESS 57 4.1 INTRODUCTION 57 4.2 CIRCUIT DESIGN 58 4.2.1 ACTIVE CIRCUIT 59 4.2.2 PASSIVE COMPONENTS 61 4.3 SIMULATIONS AND MEASUREMENTS 63 4.3.1 INJECTION LOCKED ×5 FREQUENCY MULTIPLIER 64 4.3.2 INJECTION LOCKED ×4/×6 FREQUENCY MULTIPLIER 71 CHAPTER 5 FREQUENCY DOUBLER BASED ON GAN BY USING EIGHT-SHAPED INDUCTOR 79 5.1 INTRODUCTION 79 5.1.1 GAN PROCESS 81 5.2 CIRCUIT DESIGN 82 5.2.1 ACTIVE CIRCUIT 83 5.2.2 PASSIVE COMPONENTS 85 5.3 SIMULATIONS AND MEASUREMENTS 86 CHAPTER 6 CONCLUSION 91 REFERENCES 92

    [1] "EMF EXPLAINED 2.0," [ONLINE]. AVAILABLE: HTTP://WWW.EMFEXPLAINED.INFO/POL/?ID=25913. [ACCESSED 2022].
    [2] B. RAZAVI, "RF MICROELECTRONICS," PP. 225-226, 1998.
    [3] J. ROGERS AND C. PLETT, "RADIO FREQUENCY INTEGRATED CIRCUIT DESIGN," 2003.
    [4] N. M. NGUYEN AND R. G. MEYER, "START-UP AND FREQUENCY STABILITY IN HIGH FREQUENCY OSCILLATORS," IEEE JOURNAL OF SOLID STATE CIRCUITS, VOL. 27, NO. 5, PP. 810–820, MAY 1992.
    [5] B. RAZAVI, "DESIGN OF INTEGRATED CIRCUITS FOR OPTICAL COMMUNICATIONS," 2002.
    [6] B. RAZAVI, "DESIGN OF ANALOG CMOS INTEGRATED CIRCUITS," 2001.
    [7] K.-W. CHENG AND Y.-R. TSENG, "5 GHZ CMOS QUADRATURE VCO USING TRIFILAR-TRANSFORMER-COUPLING TECHNOLOGY," IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 26, NO. 9, PP. 717–719, SEP. 2016.
    [8] F. SONG, Y. ZHAO, B. WU, L. TANG, L. LIN AND B. RAZAVI, "16.5 A FRACTIONAL-N SYNTHESIZER WITH 110FSRMS JITTER AND A REFERENCE QUADRUPLER FOR WIDEBAND 802.11AX," IEEE OF SOLID STATE CIRCUITS CONFERENCE, PP. 264-266, 2019.
    [9] J.-S. SYU, H.-L. LU AND C. MENG, "A 0.6 V 30 GHZ CMOS QUADRATURE VCO USING MICROWAVE 1:1:1 TRIFILAR TRANSFORMER," IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 22, NO. 2, PP. 88-90, 2012.
    [10] L. FANORI, A. MAHMOUD, T. MATTSSON, P. CAPUTA, S. RÄMÖ AND P. ANDREANI, "A 2.8 TO 5.8 GHZ HARMONIC VCO IN A 28 NM UTBB FD-SOI CMOS PROCESS," IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM, PP. 195-198, 2015.
    [11] H. YOON, J. KIM, S. PARK, Y. LIM, Y. LEE, J. BANG, K. LIM AND J. CHOI, "A -31DBC INTEGRATED PHASE NOISE 29GHZ FRACTIONAL-N FREQUENCY SYNTHESIZER SUPPORTING MULTIPLE FREQUENCY BANDS FOR BACKWARD COMPATIBLE 5G USING A FREQUENCY DOUBLER AND INJECTION-LOCKED FREQUENCY MULTIPLIERS," IEEE INTERNATIONAL SOLID STATE CIRCUITS CONFERENCE, PP. 366-368, 2018.
    [12] X. LIU AND H. C. LUONG, "A FULLY INTEGRATED 0.27THZ INJECTION-LOCKED FREQUENCY SYNTHESIZER WITH FREQUENCY-TRACKING LOOP IN 65-NM CMOS," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 55, NO. 4, PP. 1051-1063, 2019.
    [13] A. LI, S. ZHENG, J. YIN, H. C. LUONG AND X. LUO, "A CMOS 21-48GHZ FRACTIONAL-N SYNTHESIZER EMPLOYING ULTRA-WIDEBAND INJECTION-LOCKED FREQUENCY MULTIPLIERS," IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE, PP. 1-4, 2013.
    [14] M. BAO, R. KOZHUHAROV AND H. ZIRATH, "A D-BAND FREQUENCY SIXTUPLER MMIC WITH VERY LOW DC POWER CONSUMPTION," IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 26, NO. 9, PP. 726-728, SEP. 2016.
    [15] Y.-S. LIN, C.-H. WU, C.-C. SU AND Y.-H. WANG, "A LOW POWER K-BAND FREQUENCY QUINTUPLER WITH CURRENT-REUSED AND HARMONIC-ENHANCED TECHNIQUE," IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 24, NO. 10, PP. 701-703, OCT. 2014.
    [16] Y. CHANG, Y. HSIAO, Y. LIN AND H. WANG, "A W-BAND LO CHAIN WITH INJECTION-LOCKED FREQUENCY SEXTUPLER AND MEDIUM POWER AMPLIFIER USING 65-NM CMOS TECHNOLOGY FOR AUTOMOTIVE RADAR APPLICATIONS," ASIAPACIFIC MICROWAVE CONFERENCE, PP. 1-3, 2015.
    [17] J. A. QAYYUM, J. D. ALBRECHT, J. PAPAPOLYMEROU AND A. C. ULUSOY, "A COMPACT W-BAND FREQUENCY TRIPLER USING SINGLE-BALANCED TOPOLOGY," IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 30, NO. 8, PP. 806-809, AUG. 2020.
    [18] E. ÖJEFORS, B. HEINEMANN AND U. R. PFEIFFER, "ACTIVE 220 AND 325 GHZ FREQUENCY MULTIPLIER CHAINS IN AN SIGE HBT TECHNOLOGY," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 5, PP. 1311-1318, MAY 2011.
    [19] M. BAO, Z. HE, T. N. DO AND H. ZIRATH, "A 110-TO-147 GHZ FREQUENCY SIXTUPLER IN A 130 NM SIGE BICMOS TECHNOLOGY," EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE, PP. 105-108, 2018.
    [20] B. GILBERT, "A PRECISION FOUR-QUADRANT MULTIPLIER WITH SUBNANOSECOND RESPONSE," IEEE JOURNAL OF SOLID STATE CIRCUITS, VOL. 3, NO. 4, PP. 365-373, DEC. 1968.
    [21] J. ZHANG, Y. PENG, H. LIU, C. ZHAO, Y. WU AND K. KANG, "A 22.4 TO 40.6 GHZ MULTI-RATIO INJECTION-LOCKED FREQUENCY MULTIPLIER WITH 57.7 DBC HARMONIC REJECTION," IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM, PP. 1-4, 2020.
    [22] A. ERGINTAV, F. HERZEL, J. BORNGRÄBER, D. KISSINGER AND H. J. NG, "AN INTEGRATED 240 GHZ DIFFERENTIAL FREQUENCY SIXTUPLER IN SIGE BICMOS TECHNOLOGY," IEEE TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS, PP. 43-46, 2017.
    [23] Y. ZHENG, SAAVEDRA AND C. E., "A BIPOLAR MMIC FREQUENCY TRIPLER," INTERNATIONAL CARIBBEAN CONFERENCE ON DEVICES CIRCUITS AND SYSTEMS, PP. 1-4, 2008.
    [24] S.-D. TANG AND W.-H. HUANG, "KA-BAND QUADRATURE QUINTUPLER FOR WIRELESS SENSORS," SENSORS AND MATERIALS, VOL. 32, NO. 9, PP. 3107–3114, 2020.
    [25] A. OLSEN, M. INGVARSON, B. ALDERMAN AND J. STAKE, "A 100-GHZ HBV FREQUENCY QUINTUPLER USING MICROSTRIP ELEMENTS," IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 14, NO. 10, PP. 493-495, OCT. 2004.
    [26] M. JALALIFAR AND G.-S. BYUN, "AN ENERGY-EFFICIENT MULTI LEVEL RF INTERCONNECT FOR GLOBAL NETWORK-ON-CHIP COMMUNICATION," ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, VOL. 102, PP. 131-143, 2020.
    [27] A. BILATO, V. ISSAKOV AND A. BEVILACQUA, "A 114-126 GHZ FREQUENCY QUINTUPLER WITH >36 DBC HARMONIC REJECTION IN 0.13 ΜM SIGE BICMOS," IEEE BICMOS AND COMPOUND SEMICONDUCTOR INTEGRATED CIRCUITS AND TECHNOLOGY SYMPOSIUM, PP. 1-4, 2019.
    [28] K. KOBAYASHI, A. OKI, L. TRAN, J. COWLES, A. GUTIERREZ-AITKEN, F. YAMADA, T. BLOCK AND D. STREIT, "A 108-GHZ INP-HBT MONOLITHIC PUSH-PUSH VCO WITH LOW PHASE NOISE AND WIDE TUNING BANDWIDTH," IEEE JOURNAL OF SOLIDSTATE CIRCUITS, VOL. 34, NO. 9, PP. 1225-1232, SEP. 1999.
    [29] F. SINNESBICHLER, B. HAUTZ AND G. OLBRICH, "A SI/SIGE HBT DIELECTRIC RESONATOR PUSH-PUSH OSCILLATOR AT 58 GHZ," IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 10, NO. 4, PP. 145-147, APR. 2000.
    [30] R. WANNER, H. SCHAFER, R. LACHNER, G. OLBRICH AND P. RUSSER, "A FULLY INTEGRATED SIGE LOW PHASE NOISE PUSH-PUSH VCO FOR 82 GHZ," EUROPEAN GALLIUM ARSENIDE AND OTHER SEMICONDUCTOR APPLICATION SYMPOSIUM, PP. 249-252, 2005.
    [31] BURAK ÇATLI AND M. M. HELLA, "TRIPLE-PUSH OPERATION FOR COMBINED," IEEE JOURNAL OF SOLID STATE CIRCUITS, VOL. 45, NO. 8,PP. 1575-1589, AUG. 2010.
    [32] S. LAI, D. KUYLENSTIERNA, M. ÖZEN, M. HÖRBERG, N. RORSMAN, I. ANGELOV AND H. ZIRATH, "LOW PHASE NOISE GAN HEMT OSCILLATORS WITH EXCELLENT FIGURES OF MERIT," IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 24, NO. 6, PP. 412-414, JUN. 2014.
    [33] H. LIU, X. ZHU, C. C. BOON, X. YI, M. MAO AND W. YANG, "DESIGN OF ULTRA LOW PHASE NOISE AND HIGH POWER INTEGRATED OSCILLATOR IN 0.25 ΜM GAN-ON-SIC HEMT TECHNOLOGY," IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 24, NO. 2, PP. 120-122, FEB. 2014.
    [34] S. LAI, D. KUYLENSTIERNA, M. HÖRBERG, N. RORSMAN, I. ANGELOV, K. ANDERSSON AND H. ZIRATH, "ACCURATE PHASE-NOISE PREDICTION FOR A BALANCED COLPITTS GAN HEMT MMIC OSCILLATOR," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 61, NO. 11, PP. 3916-3926, NOV. 2013.
    [35] H. ZIRATH, L. SZHAU, D. KUYLENSTIERNA, J. FELBINGER, K. ANDERSSON AND N. RORSMAN, "AN X-BAND LOW PHASE NOISE ALGAN-GAN-HEMT MMIC PUSH-PUSH OSCILLATOR," IEEE COMPOUND SEMICONDUCTOR INTEGRATED CIRCUIT SYMPOSIUM, PP. 1-4, 2011.
    [36] X. LAN, M. WOJTOWICZ, M. TRUONG, F. FONG, M. KINTIS, B. HEYING, I. SMORCHKOVA AND Y. C. CHEN, "A V-BAND MONOLITHIC ALGAN/GAN VCO," IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 18, NO. 6, PP. 407-409, 2008.
    [37] H. LEE, S.-L. JANG, H. LIU AND L. Y. CHEN, "DIVIDE‐BY‐2 INJECTION‐LOCKED FREQUENCY DIVIDER EXPLOITING AN 8‐SHAPED INDUCTOR," MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, PP. 1-5, APR. 2021.
    [38] H.-C. LEE, S.-L. JANG, Y.-H. FAN, F.-S. CHOU, Y.-S. LIAO AND M.-H. JUANG, "DIVIDE-BY-2 INJECTION-LOCKED FREQUENCY DIVIDERS WITH TWISTED INDUCTORS," INTERNATIONAL WORKSHOP ON ELECTROMAGNETICS, PP. 1-5, 2020.
    [39] S. L. JANG, Y.-J. SU, K. J. LIN AND B. WANG., "AN 4.7 GHZ LOW POWER CROSS‐COUPLED GAN HEMT OSCILLATOR," MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, PP. 2442 - 2447, 2018.
    [40] S.-L. JANG, J. C. HOU, B.-S. SHIH AND G.-Z. LI, "LOW PHASE NOISE 8.22 GHZ GAN HEMT OSCILLATOR USING A FEEDBACK MULTI-PATH TRANSFORMER," MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, VOL. 61, NO. 3, PP. 605-609, DEC. 2018.
    [41] W.-C. LAI AND S.-L. JANG, "AN X-BAND GAN HEMT OSCILLATOR WITH FOUR-PATH INDUCTORS," APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, PP. 1059-1063, NOV. 2020.
    [42] S. LAI, D. KUYLENSTIERNA, M. ÖZEN, M. HÖRBERG, N. RORSMAN, I. ANGELOV AND H. ZIRATH, "LOW PHASE NOISE GAN HEMT OSCILLATORS WITH EXCELLENT FIGURES OF MERIT," IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 24, NO. 6, PP. 412-414, JUN. 2014.
    [43] S.-L. JANG, K. J. LIN, W. C. LAI AND M.-H. JUANG, "A CAPACITIVE CROSS-COUPLED GAN HEMT INJECTION-LOCKED FREQUENCY DIVIDER," INTERNATIONAL SYMPOSIUM ON VLSI DESIGN AUTOMATION AND TEST, PP. 1-3, 2018.
    [44] W. R. CURTICE, "GAAS MESFET MODELING AND NONLINEAR CAD," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 2, PP. 220-230, FEB. 1988.
    [45] S.-L. JANG, J.-F. HUANG AND C.-W. CHANG, "PHASE NOISE FORMULA FOR DUAL-RESONANCE INJECTION-LOCKED FREQUENCY DIVIDERS," MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, VOL. 54, PP. 2491-2494, NOV. 2012.
    [46] B. RAZAVI, "A STUDY OF INJECTION LOCKING AND PULLING IN OSCILLATORS," IEEE JOURNAL OF SOLID STATE CIRCUITS, VOL. 39, NO. 9, PP. 1415-1424, SEP. 2004.
    [47] S.-L. JANG, H.-C. LEE AND M.-H. JUANG, "2:1 INJECTION-LOCKED FREQUENCY DIVIDERS USING MULTI-RESONANCE SPIRAL-INDUCTOR RESONATOR," IEEE ACCESS, VOL. 8, PP. 202240-202248, 2020.
    [48] S.-L. JANG, C.-H. LU AND Y.-H. CHANG, "DIVIDE-BY-2 INJECTION-LOCKED FREQUENCY DIVIDER USING DISTRIBUTED SPIRAL RESONATOR: 2:1 DISTRIBUTED SPIRAL RESONATOR INJECTION-LOCKED FREQUENCY DIVIDER," INTERNATIONAL SYMPOSIUM ON NEXT GENERATION ELECTRONICS, PP. 1-3, 2018.
    [49] O. KURSU, T. RAHKONEN AND A. PÄRSSINEN, "A 14.6 GHZ-19.2 GHZ DIGITALLY CONTROLLED INJECTION LOCKED FREQUENCY DOUBLER IN 45 NM SOI CMOS," EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE, PP. 104-107, 2022.
    [50] W.-C. LAI, J.-W. JHUANG, S.-L. JANG, G.-Y. LIN AND C.-W. HSUE, "WIDE-BAND INJECTION-LOCKED FREQUENCY DOUBLER," IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, PP. 265-268, 2016.
    [51] E. MONACO, M. POZZONI, F. SVELTO AND A. MAZZANTI, "INJECTION-LOCKED CMOS FREQUENCY DOUBLERS FOR Μ-WAVE AND MM-WAVE APPLICATIONS," IEEE JOURNAL OF SOLID STATE CIRCUITS, VOL. 45, NO. 8, PP. 1565-1574, AUG. 2010.

    QR CODE