簡易檢索 / 詳目顯示

研究生: 張智林
Chih-Lin Chang
論文名稱: 微波測距雷達模組研製及其關鍵組件設計
Development of Microwave Ranging Radar Module and Its Key Component Design
指導教授: 曾昭雄
Chao-Hsiung Tseng
口試委員: 瞿大雄
Tah-Hsiung Chu
陳士元
Shih-Yuan Chen
邱煥凱
Hwann-Kaeo Chiou
張鴻埜
Hong-Yeh Chang
馬自莊
Tzyh-Ghuang Ma
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 105
中文關鍵詞: 梳型濾波器以濾波器為基礎之振盪器微波振盪器壓控振盪器分枝耦合器耦合器微帶線微波電路微型化環型偶合器單晶微波積體電路砷化鎵
外文關鍵詞: combline filter, filter-based oscillator, microwave oscillator, branch-line couplers, microstrips, microwave circuits, rat-race couple, rmonolithic microwave integrated circuit (MMIC), pHEMT
相關次數: 點閱:436下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要係使用六埠網路研製微波測距雷達模組,其電路設計概念、實現方式及量測模擬結果皆於本論文中詳細討論。
    本論文首先使用梳型濾波器為基礎研製具低相位雜訊之微波振盪器與壓控振盪器,該元件主要用於產生測距雷達系統中所需之連續波訊號。由於梳型濾波器係使用多共振器合成,因此可提供較單一共振器佳之品質因數,若用於設計振盪
    器,將可獲致效果極佳之相位雜訊特性。此外,為了精準估算出振盪器之相位雜訊效能,本論文採用複數品質因數(Qsc)估算振盪器之整體Q 值,並將其振盪器設計在該頻率峰值上,以取代使用濾波器之相位延遲響應頻率峰值設計振盪器。
    再者,本論文提出一非對稱T 型結構設計方法,用以實現一系列微波被動電路,如分枝耦合器、環型耦合器、功率分配器及六埠網路。非對稱T 型結構係由兩段不同電氣長度之串聯高阻抗微帶線及並聯低阻抗段枝所構成,再搭配彎折技術,則可將該非對稱T 型結構作更彈性之電路佈局,達成電路縮小之目的。此外,與傳統對稱T 型結構比較,使用非對稱T 型結構研製被動電路,能有效地改善反射損失頻寬。
    最後,本論文將所研製之主、被元件整合成微波測距雷達模組。由壓控振盪器發射兩不同頻率之射頻訊號,經由天線輻射,並接收由待測物反射之電磁波。此反射訊號與部分射頻訊號可經由六埠網路獲得兩組相位差資料,以計算待測物之距離。


    In this dissertation, the six-port network is employed to realize a microwave ranging radar system. The circuit design procedures, implementation, and verification are completely presented.
    Firstly, a new low phase-noise microwave oscillator is developed based on the microstrip combline bandpass filter. This component acts as a continuous wave (CW) signal source in the developed radar system. For this type of the oscillator, the filter is embedded into the feedback loop to treat as a frequency stabilization element. Since the bandpass filter is synthesized by multiple resonators, it can obtain a better quality factor as compared with that of a single resonator. Besides, instead of designing the oscillator at the group-delay-peak frequency of the filter to achieve a good phase-noise performance, in this dissertation, the peak frequency of the complex quality factor Qsc is adopted for the oscillator design.
    Furthermore, an asymmetrical T-structure is applied to develop the compact planar branch-line coupler, rat-race coupler, Wilkinson power divider, and six-port network. The quarter-wave transmission line, namely the basic element for realizing these components, can be replaced by the asymmetrical T-structure, which is composed of a low-impedance shunt stub and two series high-impedance lines with unequal electrical lengths. To further reduce the circuit size, the high-impedance lines can be flexibly folded and optimally filled in the blank area of the blank space, this design approach can achieve a significant circuit size reduction. In addition, as compared with the approach using the symmetrical T-structure, utilizing the proposed asymmetrical T-shaped structure to develop these passive components can significantly improve the return loss bandwidth.
    Finally, a microwave ranging radar system can be integrated by the developed low phase-noise filter-based oscillator and the six-port network. Since the six-port network acts as a frequency discriminator between the transmitted signal and the received signal, one can simply calculate the phase difference between there two signals. Therefore, the distance to the target can be extracted from the phase difference by transmitting two CW frequencies.

    Contents 摘要 i Contents iv Chapter 1 1 Introduction 1 1-1 Research Motivation 1 1-2 Literature Survey 1 1-3 Contributions 4 1-4 Chapter Outlines 5 Chapter 2 Filter-Based Microwave Oscillator 6 2-1 Introduction 6 2-2 Oscillator Design Using Complex Quality Factor 8 2-2-1 Complex Quality Factor 8 2-2-2 Complex Quality Factor of Filter 10 2-2-3 Oscillator Designed at Qsc-Peak Frequency 13 2-2-4 Oscillator Designed at Group-Delay-Peak Frequency 15 2-2-5 Design Procedures of Filter-Based Oscillator 19 2-3 Oscillator and VCO Design Based on Combline Filter 19 2-3-1 Oscillator Design Using Combline Filter 20 2-3-2 Complex Quality Factor of Oscillator 22 2-3-3 Narrow-band VCO Design Using Combline Filter 26 2-3-4 Wideband VCO Design Using Tunable Combline Filter 29 2-4 MMIC Filter-Based VCO Using 0.15-m GaAs pHEMT Technology 33 2-5 Summary 38 Chapter 3 Compact Planar Passive Components with Asymmetrical T-Structures 39 3-1 Introduction 39 3-2 Design Method of Asymmetrical T-Structure 43 3-2-1 Asymmetrical T-structure Equivalent to a High-Low Impedance Section 43 3-2-2 Transferring a High-Low Impedance Section Back to an Asymmetrical T-Structure 46 3-3 Branch-Line Coupler Using Asymmetrical T-Structures 49 3-4 Wilkinson Power Divider Using Two-Section Asymmetrical T-Structures 56 3-5 Ka-Band Single-Balanced Mixer Using Asymmetrical T-Structure Rat-Race Coupler 62 3-6 Summary 69 Chapter 4 Development of Six-Port Ranging Radar Sensor 70 4-1 System Block of the Radar Sensor 70 4-2 Microwave Six-Port Network 70 4-3 Implementation and Evaluation of Radar Sensor 75 4-3-1 PLL CW Source 75 4-3-2 Quasi-Yagi Antenna 78 4-3-3 Performance Evaluation of a Ranging Radar Sensor 78 4-4 Summary 82 Chapter 5 Conclusions 83 5-1 Summary 83 5-2 Suggestions for Future Work 84 References 86

    [1]G. F. Engen, “The six-port reflectometer: An alternative network analyzer,” IEEE Trans. Microwave Theory Tech., vol. MTT-25, pp. 1077–1079, Dec. 1977.
    [2]C. G. Miguélez, B. Huyard, E. Bergeault, and L. P. Jallet, “A new automobile radar based on the six-port phase/frequency discriminator,” IEEE Trans. Veh. Technol., vol. 49, pp. 1416–1423, July 2000.
    [3]E. Moldovan, S. O. Tatu, T. Gaman, K. Wu, and R. G. Bosisio, “A new 94-GHz six-port collision avoidance radar sensor,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 751–759, Mar. 2004.
    [4]A. Stelzer, C. G. Diskus, and H. W. Thim, “A microwave position sensor with sub-millimeter accuracy,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2621–2624, Dec. 1999.
    [5]T. Yacabe, F. Xiao, K. Iwamoto, F. Ghannouchi, K. Fujii, and H. Yabe, “Six-port based wave corellator with application to beam direction finding,” IEEE Trans. Instrum. Meas., vol. 50, no. 2, pp. 377–380, Apr. 2001.
    [6]F. Xiao, F. M. Ghannouchi, and T. Yakabe, “Application of a six-port wave-correlator for a very low velocity measurement using the Doppler effect,” IEEE Trans. Instrum. Meas., vol. 52, pp. 297–301, Apr. 2003.
    [7]S. C. Song and Y. S. Hong, “A new approach for evaluating the phase noise requirements of STALO in a Doppler radar,” in Proc. Eur. Microw. Conf., Oct. 9–12, 2007, pp. 1477–1480.
    [8]D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, no. 2, pp. 329-330, Feb. 1966.
    [9]G. Lan, D. Kalokitis, E. Mykietyn, E. Hoffman, and F. Sechi, “Highly stabilized ultra-low noise FET oscillator with dielectric resonator,” in IEEE MTT-S Int. Microwave Symp. Dig., 1986, pp. 83-86.
    [10]G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, New York: John Wiley & Sons, 1990, ch. 6.
    [11]L. Dussopt and G. M. Rebeiz, “A low phase noise silicon 18-GHz push–push VCO,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 1, pp. 4–6, Jan. 2003.
    [12]J. Jung, C. S. Cho, J. W. Lee, J. Kim, and T. H. Kim, “A low phase noise microwave oscillator using split ring resonators,” in Proc. 36th Eur. Microw. Conf., Manchester, U.K., 2006, pp. 95–98.
    [13]Y.-T. Lee, J.-S. Lim, C.-S. Kim, D. Ahn, and S. Nam, “A compact-size microstrip spiral resonator and its application to microwave oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 10, pp. 375–377, Oct. 2002.
    [14]L.-H. Hsieh and K. Chang, “High-efficiency piezoelectric-transducer tuned feedback microstrip ring-resonator oscillators operating at high resonant frequencies,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 1141–1145, Apr. 2003.
    [15]J. Choi and C. Seo, “Microstrip square open-loop multiple split-ring resonator for low-phase-noise VCO,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3245–3252, Dec. 2008.
    [16]Y.-T. Lee, J. Lee, and S. Nam, “High-Q active resonators using amplifiers and their applications to low phase-noise free-running and voltage-controlled oscillators,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 11, pp. 2621–2626, Nov. 2004.
    [17]J. Choi, M.-H. Chen, and A. Mortazawi, “An X-band low phase noise oscillator employing a four-pole elliptic-response microstrip bandpass filter,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2007, pp. 1529-1532.
    [18]J. Choi, M. Nick, and A. Mortazawi, “Low phase-noise planar oscillators employing elliptic-response bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 57, pp. 1959–1965, Aug. 2009.
    [19]C.-L. Chang and C.-H. Tseng, “Design of low phase-noise oscillator and voltage-controlled oscillator using microstrip trisection bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 622-624, Nov. 2011.
    [20]G. F. Engen, “A (historical) review of the six-port measurement technique,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 12, pp. 2414–2417, Dec. 1997.
    [21]E. Moldovan, S. O. Tatu, T. Gaman, K. Wu, and R. G. Bosisio, “A new 94-GHz six-port collision avoidance radar sensor,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 751–759, Mar. 2004.
    [22]S. O. Tatu, E. Moldovan, K. Wu, and R. G. Bosisio, “A new direct millimeter- wave six-port receiver,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 12, pp. 2517–2522, Dec. 2001.
    [23]C.-W. Tang and M.-G. Chen, “Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 1926–1934, Sep. 2007.
    [24]K. W. Eccleston and S. H. M. Ong, “Compact planar microstripline branch-line and rat-race coupler,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 2119–2125, Oct. 2003.
    [25]K.-O. Sun, S.-J. Ho, C.-C. Yen and D. Weide, “A compact branch-line coupler using discontinuous microstrip lines” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 519–520, Aug. 2005.
    [26]S.-C. Jung, R. Negra, and F. M. Ghannouchi, “A design methodology for miniaturized 3-dB branch-line hybrid couplers using distributed capacitors printed in the inner area,” IEEE Trans. Microw. Theory Tech, vol. 56, pp. 2950-2953, Dec. 2008.
    [27]C.-W. Tang, M.-G. Chen, and C.-H. Tsai, “Miniaturization of microstrip branch-line coupler with dual transmission lines,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 185-187, Mar. 2008.
    [28]J. Wang, B. Z. Wang, Y.-X. Guo, L.-C. Ong, and S. Xiao “A compact slow-wave microstrip branch-line coupler with high performance,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 501-503, Jul. 2007.
    [29]C.-W. Wang, T.-G. Ma, and C.-F. Yang, “A new planar artificial transmission line and its applications to a miniaturized Butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 2792–2801, Dec. 2007.
    [30]H. Ghali, and T. A. Moselhy, “Miniaturized fractal rat-race, branch-line, and coupled-line hybrids,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 2513–2520, Nov. 2004.
    [31]D. M. Pozar, Microwave Engineering, 3rd ed. New York: John Wiley & Sons, 2005.
    [32]S.-S. Liao, P.-T. Sun, N.-C. Chin and J.-T. Peng, “A novel compact-size branch-line coupler,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 588–590, Sep. 2005.
    [33]S.-S. Liao and J.-T. Peng, “Compact planar microstrip branch-line couplers using the quasi-lumped elements approach with nonsymmetrical and symmetrical T-shaped structure,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 3508–3514, Sep. 2006.
    [34]T. Ohira, “Rigorous Q-factor formulation for one- and two-port passive linear networks from an oscillator noise spectrum viewpoint,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 12, pp. 846-850, Dec. 2005.
    [35]T. Ohira and K. Araki, “Oscillator frequency spectrum as viewed from resonant energy storage and complex Q factor,” IEICE Electronics Express, vol. 3, no. 16, pp.385-389, Aug. 2006.
    [36]M. Nick and A. Mortazawi, “Low phase-noise planar oscillators based on low-noise active resonators,” IEEE Trans. Microw. Theory Tech., vol. 58, pp. 1133–1139, May 2010.
    [37]J.-S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Application. New York: Wiley, 2001.
    [38]I. C. Hunter and J. D. Rhodes, “Electronically tunable microwave bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. MTT-30, pp. 1354–1360, Sep. 1982.
    [39]G. Torregrosa-Penalva, G. López-Risueno, and José I. Alonso, “A simple method to design wide-band electronically tunable combline filters,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 172–177, Jan. 2002.
    [40]SIEMNS, NPN Silicon RF Transistor BFP 405 Data Sheet, SIEMNS Inc., Munich, Germany, 1998 [Online] Available: http://pdf.datasheetcatalog.com/datasheet /siemens/Q62702-F1592.pdf
    [41]M. Tiebout, “Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp. 1018–1024, Jul. 2001.
    [42]SKYWORKS, SMV123x Series: Hyperabrupt Junction Tuning Varactors Data Sheet, Skyworks Solutions Inc., Woburn, Massachusetts, USA, 2009 [Online] Available: http://www.skyworksinc.com/uploads/documents/200058Q.pdf
    [43]C. M. Yuen and K. F. Tsang, “A 1.8-V distributed voltage-controlled oscillator module for 5.8-GHz ISM band,” IEEE Microw. Wireless Compon. Lett., vol. 14, pp. 525–527, Nov. 2004.
    [44]G. Avitabile, F. Cannone, M. Capodiferro, L. Carella, and N. Lofù, “Coarse-fine, wideband distributed voltage controlled oscillator for wireless applications,” Electron. Lett., vol. 42, no. 5, pp. 285–286, Mar. 2006.
    [45]J. Choi and C. Seo, “Broadband and low phase noise VCO using tunable metamaterial transmission line based on varator-loaded split-ring resonator,” in Proc. Korea-Japan Microw. Conf., 2007, pp. 145-148.
    [46]Mini-Circuits, Voltage Controlled Oscillator ROS-2200+ Data Sheet, Mini-Circuits Inc., New York, USA. [Online] Available: http://www.minicircuits.com /pdfs/ROS-2200+.pdf
    [47]Mini-Circuits, Voltage Controlled Oscillator ROS-2260W+ Data Sheet, Mini-Circuits Inc., New York, USA. [Online] Available: http://www.minicircuits.com /pdfs/ROS-2260W+.pdf
    [48]K. Riepe, H. Leier, A. Marten, U. Güttich, J. M. Dieudonné, and K. H. Bachem, “35–40 GHz monolithic VCO’s utilizing high-speed GaInP/GaAs HBT’s, ” IEEE Microwave Guided Wave Lett., vol. 4, pp. 274–276, Aug. 1994.
    [49]J. Lin, Y. K. Chen, D. A. Humphrey, R. A. Hamm, R. J. Malik, A. Tate, R. F. Kopf, and R. W. Ryan, “Ka-band monolithic InGaAs/InP HBT VCO’s in CPW structure, ” in IEEE Microwave Guided Wave Lett., vol. 5, pp. 379–381, Nov. 1995.
    [50]H. Li and H. M. Rein, “Millimeter-wave VCOs with wide tuning range and low phase noise, fully integrated in a SiGe bipolar production technology, ” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 184–191, Feb. 2003.
    [51]J. Hilsenbeck, F. Lenk, W. Heinrich, and J. Würfl, “Low phase noise MMIC VCOs for Ka-band applications with improved GaInP/GaAs-HBT technology, ” in IEEE GaAs IC Symp. Dig., 2003, pp. 223–226.
    [52]A. Kurdoghlian, M. Mokhtari, C. H. Fields, M. Wetzel, M. Sokolich, M. Micovic, S. Thomas, III, B. Shi, and M. Sawins, “40 GHz fully integrated and differential monolithic VCO with wide tuning range in AlInAs/InGaAs HBT, ” in Proc. GaAs Integrated Circuits Symp. Dig., Oct. 2001, pp. 129–132.
    [53]G. Torregrosa-Penalva, G. López-Risueno, and José I. Alonso, “A simple method to design wide-band electronically tunable combline filters,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 172–177, Jan. 2002.
    [54]L.-H. Lu, P. Bhattacharya, L.-P. B. Katehi, and G.-E. Ponchak, “X-band and K-band lumped Wilkinson power dividers with a micromachined technology,” in IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, June 11-16, 2000, pp. 287-290.
    [55]M.-C. Scardelletti, G.-E. Ponchak, and T.-M. Weller, “Miniaturized Wilkinson power dividers utilizing capacitive loading,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 1, pp. 6-8, Jan. 2002.
    [56]J. Wang, J. Ni, Y. X. Guo, and D. Fang, “Miniaturized microstrip Wilkinson power divider with harmonic suppression, ” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 7, pp. 440--442,July 2009.
    [57]J. Yang, C. Gu, and W. Wu, “Design of novel compact coupled microstrip power divider with harmonic suppression,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 572–574, Sep. 2008.
    [58]J. Zhang, L. Li, J. Gu, and X. Sun, “Compact and harmonic suppression Wilkinson power divider with short circuit anti-coupled line,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 9, pp. 661–663, Sep. 2007.
    [59]C. H. Tseng and C. H. Wu, “Compact planar Wilkinson power divider using π-equivalent shunt-stub-based artificial transmission lines,” Electron. Lett., vol. 46, no. 19, pp. 1327-1328, Sep. 2010.
    [60]D. H. Lee, Y. B. Park, and Y. Yun, “Highly miniaturised Wilkinson power divider employing π-type multiple coupled microstrip line structure,” Electron. Lett., vol. 42, no. 13, pp. 763–765, Jun. 2006.
    [61]F. Zhang and C. F. Li, “Power divider with microstrip electromagnetic bandgap element for miniaturisation and harmonic rejection,” Electron. Lett., vol. 44, no. 6, pp. 422–423, Mar. 2008.
    [62]C. M. Lin, H. H. Su, J. C. Chiu, and Y. H. Wang, “Wilkinson power divider using microstrip EBG cells for the suppression of harmonics,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10, pp. 700–702, Oct. 2007.
    [63]C. W. Wang, K. H. Li, C. J. Wu, and T. G. Ma, “A miniaturized Wilkinson power divider with harmonic suppression characteristics using planar artificial transmission lines,” in Proc. 2007 Asia-Pacific Micro. Conf. pp. 1-4, Bangkok, Dec. 2007.
    [64]W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Compon., Hybrids, Manufact. Technol., vol. 15, pp. 483–490, Aug. 1992.
    [65]B. Piernas, H. Hayashi, K. Nishikawa, and T. Nakagawa, “Improvement of the design of 180° rat-race hybrid,” Electron. Lett., vol. 36, no. 12, pp. 1035–1036, Jun. 2000.
    [66]M. Kimishima, T. Ataka, and H. Okabe, “A Family of Q, V and W-Band Monolithic Resistive Mixers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2001, pp. 115–118.
    [67]P.-S.Wu, C.-H.Wang, T.-W. Huang, and H.Wang, “Compact and broadband millimeter-wave monolithic transformer balanced mixers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 10, pp. 3106–3114, Oct. 2005.
    [68]P.-S. Wu , C.-S. Lin , T.-W. Huang , H. Wang , Y.-C. Wang and C.-S. Wu, “A millimeter-wave ultra-compact broadband diode mixer using modified Marchand balun,” Gallium Arsenide and Other Semiconduct. Applicat. Symp. Dig., p.349 , 2005.
    [69]P. C. Yeh, W. C. Liu, and H. K. Chiou, “Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element highpass/ band-pass balun,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 62–64, Feb. 2005.
    [70]SKYWORKS, Surface Mount Mixer and Detector Schottky Diodes Data Sheet, Skyworks Solutions Inc., Woburn, Massachusetts, USA, 2005 [Online] Available: http://www.skyworksinc.com/uploads/documents/Surface_Mount_Schottky_Diodes_200041W.pdf
    [71]G. Vinci, A. Koelpin, and R. Weigel, “Employing six-port technology for phase-measurement-based calibration of automotive radar,” in Proc. Microwave Conf., 2009, Asia Pacific , pp. 329–332.
    [72]TXN, PLLatinum Low Power Frequency Synthesizer for RF Personal Communications LMX2326 Data Sheet, TXN Inc., Dallas, Texas, USA, 2000 [Online] Available: http://www.ti.com/lit/ds/symlink/lmx2326.pdf
    [73]G. Zheng, A. A. Kishk, A. B. Yakovlev, and A.W. Glisson, “Simplified feed for a modified printed Yagi antenna,” Electron. Lett., vol. 40, no. 8, pp. 464–465, Apr. 2004.
    [74]SKYWORKS, SMV2019-SMV2023 Series: Hyperabrupt Junction Tuning Varactors Data Sheet, Skyworks Solutions Inc., Woburn, Massachusetts, USA, 2011 [Online] Available:http://www.skyworksinc.com/uploads/documents /SMV2019_SMV2023_Series_200074N.pdf
    [75]C. G. Miguélez, “A new automobile radar based on the six-port phase/ frequency discriminator,” IEEE Trans.Veh. Technol., vol. 49, no. 4, pp.1416–1423, Jul. 2000.

    QR CODE