簡易檢索 / 詳目顯示

研究生: 邱仲慶
Chung-Ching Chiu
論文名稱: 差動考畢子壓控振盪器及注入鎖定除頻器之研究
The Study of Differential Complementary Colpitts VCO and Injection Locked Frequency Divider
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 莊敏宏
Miin-Horng Juang
黃進芳
Jhin-Fang Huang
許重傑
Chorng-Jye Sheu
馮武雄
Wu-shing Feng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 96
中文關鍵詞: 壓控振盪器注入鎖定除頻器
外文關鍵詞: VCO Injection Locked Frequency Divider
相關次數: 點閱:229下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本論文主要分成二個部份。第一個部分是一個使用環型振盪器及直接注入鎖定架構的頻率除二除法器,使用TSMC 0.35 2P4M製造。而所使用的二階差動CMOS環型振盪器是利用n-MOS開關直接耦合到差動輸出。此頻率除二除法器工作在3.3V供應電壓下的自然振盪頻率為939MHz,在此自然振盪頻率下輸出之相位雜訊為-98dBc/Hz在距離絠939MHz 載波頻率1MHz處所量測之結果,消耗功率2.7mW。在注入訊號為-5dBm時,其注入鎖定範圍從1.28GHz至 2.92GHz為1640MHz(78%)。
    第二部分是一個差動互補式考畢子壓控振盪器使用TSMC 0.18um 1P6M製造。此壓控振盪器是由考畢子壓控振盪器及交互耦合結構組成且使用變壓器及差動控制的變容器來降低相位雜訊。此差動互補式考畢子壓控振盪器工作在1.2V的供應電壓下,調諧範圍441MHz (5.99GHz~6.43GHz),相位雜訊為-118.5dBc/Hz在距離6.43GHz 載波頻率1MHz處所量測之結果,其消耗功率為3.36mW。


    ABSTRACT
    This thesis is mainly composed of two topics. First, we present a 0.35-μm CMOS frequency divider realized with a ring oscillator and a direct injection-locking technique. The divide-by-2 FD circuit consists of a 2-stage differential CMOS ring oscillator with n-MOS switches directly coupled to its differential outputs, the measured phase noise of the divide-by-2 divider is -98dBc/Hz at 1MHz offset from the free running frequency of 939MHz. The low-voltage CMOS divide-by-2 FD has been implemented with the TSMC 0.35 μm CMOS technology and the power consumption is 27 mW at the supply voltage of 3.3 V. At the input power of -5dbm, the divider-by-2 FD can function properly with about 1640MHz locking range from 1.28GHz to 2.92GHz, featuring a 87% locking range.
    And finally this thesis presents a new differential CMOS voltage controlled oscillator (VCO). The topology of the proposed differential VCO is a combination of Colpitts VCO and cross-coupled VCO. A symmetric transformer and differential differentially tuned MOS varactors are used to reduce phase noise. The VCO has been fabricated with the 0.18-μm CMOS process. At the 1.2-V supply voltage, the output frequency of VCO is from 5.99GHz to 6.43GHz with 441MHz tuning range and a phase noise of -118.5dBc/Hz at a 1MHz offset from the center frequency of 6.43GHz. Its core current consumption is 2.8 mA and the core power consumption is 3.36mW. The total power consumption of this VCO is 9.12mW. The figure of merit (FoM) of this differential VCO is -189.4 dBc.

    Contents 中文摘要 I ABSTRACT II CONTENTS IV LIST OF FIGURES VI LIST OF TABLE IX CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 THESIS ORGANIZATION 2 CHAPTER 2 THE OSCILLATOR 3 2.1 THE OSCILLATOR THEORY 3 2.2 VCO IMPORTANT PARAMETERS 5 2.3 PHASE NOISE 9 2.4 THERMAL NOISE 14 2.6 VARACTORS 18 2.6.1 Diode Varactor 18 2.6.2 MOS Varactors 19 2.6.3 Inversion-Mode and Accumulation-Mode MOS Capacitors 21 2.7 INDUCTOR 25 2.7.1 Spiral inductor 25 2.7.2 The Transformers 27 2.8 THE OSCILLATORS 30 2.8.1 The LC Oscillator 30 2.8.1(a) LC Oscillator 30 2.8.1(b) One-transistor LC Oscillator 31 2.8.1(C) Cross-Coupled Differential Oscillator 34 2.8.2 Colpitts Oscillator 36 2.8.3 Ring Oscillator 39 CHAPTER 3 DESIGN OF THE INJECTION LOCKED FREQUENCY DIVIDER 42 3.1 INTRODUCTION 42 3.2 A WIDE LOCKING RANGE 0.35ΜM CMOS FREQUENCY DIVIDER (÷2 ILFD) 43 3.2.1 Two-Stages Ring Oscillators 43 3.2.2 The Divider Topology 44 3.2.3 The proposed ÷2 ILFD 47 3.2.4 Experimental Results 48 3.3 THE ILFD BASE ON LC OSCILLATOR AND SUPERHARMONIC INJECTION LOCKING TECHNIQUE. (LC-ILFD) 51 3.3.1 Conventional LC tank VCO 51 3.3.2 The proposed LC-ILFD 52 3.3.3 Experimental Results 53 CHAPTER 4 DESIGN OF DIFFERENTIAL COMPLEMENTARY COLPITTS VCO 58 4.1 INTRODUCTION 58 4.2 THE ONE-PORT COLPITTS VOLTAGE CONTROLLED OSCILLATOR ANALYSIS 60 4.3 DIFFERENTIAL COMPLEMENTARY COLPITTS VOLTAGE CONTROLLED OSCILLATOR TOPOLOGY 62 4.3.1 The Transformer 63 4.3.2 The back-gate coupling topology 64 4.3.3 Differentially-tuned varactor 65 4.3.4 The proposed 5GHz differential complementary Colpitts voltage controlled oscillator (5GHz DCCVCO) 66 4.3.5 The phase noise simulation of 5GHz DCCVCO 67 4.3.6 The proposed 6GHz differential complementary Colpitts voltage controlled oscillator (6GHz DCCVCO) 68 4.4 EXPERIMENTAL RESULTS 70 CHAPTER 5 CONCLUSION 78 REFERENCES 80

    References
    [1] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [2] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [3] A. Hajimiri, and T. H. Lee, The Design of Low Noise Oscillators, Kluwer Academic Publishers, 1999.
    [4] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, Jane. 2000.
    [5] R. L. Bunch, S. Raman, “Large-signal analysis of MOS varactors in CMOS-Gm LC VCOs,” IEEE J. Solid-State Circuits, vol. 38, pp. 1325-1332, Aug. 2003.
    [6] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [7] B. David A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, INC. 1997.
    [8] B. Razavi, K. F. Lee, and R. H. Yan, “A 13.4-GHz CMOS frequency divider,” in Proc. IEEE Int. Solid-State Circuits Conf. pp.176–177., Feb. 1994,
    [9] R. L. Miller, “Fractional-frequency generators utilizing regenerative modulation,” Proc. Inst. Radio Eng, vol. 27, pp. 446-456, July 1939.
    [10] S. Pellerano, S. Levantino, C. Samori, A. L. Lacaita, “A 13.5-mW 5-GHz frequency synthesizer with dynamic-logic frequency divider,” IEEE J. Solid State Circuit , vol 39, pp. 378 - 383,Feb. 2004.
    [11] H. Wu, A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” ISSCC Digest of Tech. Papers. pp. 412-413, Feb. 2001.
    [12] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, pp. 1170 – 1174, July 2004.
    [13] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang,” A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, pp. 299-301, Nov. 2006.
    [14] A. Bonfanti, A. Tedesco, C. Samori, A. L. Lacaita, “A 15-GHz broad-band frequency divider in 0.13-mu CMOS for quadrature generation,” IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 724-726, Nov. 2005.
    [15] A. Mazzanti, and F. Svelto , “A 1.8-GHz injection-locked quadrature CMOS VCO with low phase noise and high phase accuracy,” IEEE Trans. Circuits and systemst., vol. 53, pp. 554-726, Mar. 2006.
    [16] M. A. Do, R. Y. Zhao, K. S. Yeo and J. G. Ma, “New wide band/dual band CMOS LC voltage controlled oscillator Circuits,” IEE Proceedings, Devices and Systems, pp. 453–458, Oct. 2003.
    [17] C. Lam and B. Razavi, “A 2.6GHz/5.2GHz CMOS voltage controlled oscillator,” (ISSCC) digest of technical papers, San Francisco, USA, pp.402–403, Feb. 1999.
    [18] A. Zolfaghari and B. Razavi, “A low-power 2.4 GHz transmitter/ receiver CMOS IC,” IEEE J. Solid-State Circuits, vol. 38, pp. 176–183, Feb. 2003.
    [19] C.-Y. Cha and S.-G. Lee “A complementary Colpitts oscillator in CMOS technology,” IEEE Trans. Microw. TheoryTech., vol. 53, pp. 881 - 887, Mar. 2005.
    [20] C. R.C. De Ranter, M. S. J. Steyaert, “A 0.25μm CMOS 17GHz VCO,” ISSCC 2001 Digest of Technical Papers, pp.370-371, Feb. 2001.
    [21] C.-M. Hung, B. A. Floyd, N. Park, and K. K.O, “Fully integrated 5.35GHz CMOS VCOs and prescalers,” IEEE Trans. Microw. TheoryTech., vol.49, Jan. 2001.
    [22] Ali Hajimiri and Thomas H. Lee, “Design issues in CMOS differential LC oscillators,” J. Solid-State Circuits, Vol. 34, pp. 717 - 724, May 1999.
    [23] T. H. Lee, The Design of CMOS Radio - Frequency Integrated Circuits, Cambridge University Press, 1998.
    [24] H. – R. Kim, C.-Y. Cha, S.-M. Oh, M.-S. Yang, and S.-G. Lee “A very low-power quadrature VCO with back-gate Coupling,” IEEE J. Solid-State Circuits, vol. 39, pp. 952 - 955, Dec. 2004.
    [25] H. Jacobsson, B. Hansson, H. Berg, S. Gevorgian, “Very low phase-noise fully-integrated coupled VCOs,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2002 , vol.1, pp.467-470, June 2002.
    [26] Neric H. W. Fong, Jean-Olivier Plouchart, N. Zamdmer, D. Liu,L. F. Wagner, C. Plett and N. G. Tarr, ”A 1V 3.8-5.7GHz wide-band VCO with differentially tuned accumulation MOS varactors for common-mode noise rejection in CMOS SOI technology,” IEEE Trans. Microwave Theory Tech., vol.51, pp. 1952-1959, Aug. 2003.
    [27] H. Moon, S. Kang, Y. T. Kim, and K. Lee,” A fully differential LC-VCO using a new varactor control structure,” IEEE Microwave and Wireless Components Letters, vol.14,pp.410 – 412,Sept. 2004.
    [28] J. Rogers, J. Macedo, and C. Plett, “The effect of varactor nonlinearity on phase noise of completely integrated VCOs,” IEEE J. Solid-State Circuits, vol. 35, pp. 1360–1367, Sept. 2001.

    QR CODE