簡易檢索 / 詳目顯示

研究生: 江岳樺
Yeuh-Hua Chiang
論文名稱: 四相位壓控振盪器暨除頻器之設計
Design of CMOS Quadrature Voltage-Controlled Oscillator and Divider
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 莊敏宏
Miin-Horng Juang
黃進芳
Jhin-Fang Huang
許重傑
Chorng-Jye Sheu
馮武雄
Wu-shing Feng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 111
中文關鍵詞: 四相位壓控振盪器除頻器
外文關鍵詞: VCO, divider, quadrature
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將描述如何設計金氧半壓控振盪器。第一部份討論以可變電容與偏壓的組合方式,來改善LC壓控震盪器的可調變頻率曲線的非線性缺點,其架構為雙交叉耦合對(cross coupled pair)與A-¬mode varactor 為主要架構。第二部份討論以考畢茲(Colpitts)盪震電路為主要結構來組合出不同的四相位與變壓器回授電路。第三部份是以壓控震盪器為主要架構並加上SCL電路與注入鎖定(direct-injection)來組合出兩種不同的除頻器電路。本論文中所有的電路均使用台積電與聯電0.18µm CMOS工作電壓1.8V製程製造完成,並經由Spectre RF軟體模擬及驗證。在最後ㄧ個部分再比較各個電路的效能好壞並加以總結。


    This thesis proposes the design of CMOS Voltage-Controlled Oscillator. The first part proposes the method to improve the nonlinear drawbacks of conventional LC-Voltage-controlled oscillators by a new varactor structure. The main structures are cross coupled pair VCO and “A-mode varactor” using the standard TSMC 0.18μm CMOS 1P6M process.
    The second part of this thesis proposes a assembling quadrature VCO (QVCO) and a 2.4GHz Colpitts VCO using transformer feedback. We use the Colpitts structure to improve the phase noise of VCO in both of the circuits. In the QVCO circuit, first we use two single-ended Colpitts VCOs to form a differential Colpitts circuit, and then use two differential Colpitts to couple each other to ensure quadrature signals. In the 2.4GHz Colpitts VCO with transformer feedback, we used two transformers to increase the feedback signal and swing range.
    The third part composes of two different divider structures using VCO as major structure, then using direct-injection and SCL to complete the circuits. All of the circuits in this thesis were made by TSMC and UMC 0.18µm CMOS and were simulated with Cadence Spectre RF. Finally, the performances of these circuits are comapred.

    中文摘要 I ABSTRACT II 誌謝 III CONTENTS IV LIST OF FIGURES VII LIST OF TABLES XI CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 THESIS ORGANIZATION 2 CHAPTER 2 ANALYSIS OF OSCILLATORS 3 2.1 THE OSCILLATOR THEORY 3 2.1.1 Negative Resistance (NR) 4 2.1.2 Positive Feedback (PFB) 6 2.2 ALL TYPES OF OSCILLATORS 8 2.2.1 Ring Oscillator 8 2.2.2 LC-Tank Oscillator 11 2.3 VOLTAGE-CONTROLLED OSCILLATOR 15 2.4 THE PARAMETERS OF VCOS 16 2.4.1 Center Frequency 16 2.4.2 Tuning Range 16 2.4.3 Tuning Linearity 17 2.4.4 Output Amplitude 17 2.4.5 Power Dissipation 18 2.4.6 Supply and Common-Mode Rejection 18 2.4.7 Output Signal Purity 18 2.5 PHASE NOISE 18 2.5.1 Definition of Phase Noise 19 2.5.2 Existing Models of Phase Noise 20 2.5.2.1 Time-invariant phase noise model 21 2.5.3 Noise Sources 23 2.5.3.1 Thermal noise 23 2.5.3.2 Flicker noise 25 2.5.4 Phase Noise in Wireless Communication 27 2.5.5 Previous Models of Phase Noise 29 2.6 ON-CHIP INDUCTOR RESEARCH 30 2.6.1 Inductor Categories 30 2.6.2 Loss Mechanisms of Inductor 31 2.6.2.1 Metal Loss 31 2.6.2.2 Substrate Loss 32 2.6.2.3 Definitions of Inductor Parameters 33 2.7 VARACTOR 34 2.7.1 P-N Junction Varactor 34 2.7.2 MOS Varactor 35 2.7.2.1 Accumulation-mode MOS varactor 36 2.7.2.2 Inversion-mode MOS varactor 38 CHAPTER 3 A 5GHZ CMOS LC-VCO USING NEW DIFFERENTIALLY - TUNED VARACTOR 40 3.1 INTRODUCTION 40 3.2 VARACTOR DESIGN 42 3.3 EXPERIMENTAL RESULTS 44 CHAPTER 4 LC-TANK VOLTAGE-CONTROLLED OSCILLATORS BASED ON COLPITTS STRUCTURE 49 4.1 INTRODUCTION 49 4.2 A 2.4GHZ QUADRATURE COLPITTS VCO 50 4.2.1 Proposed Differential Colpitts VCOs 51 4.2.2 Proposed Quadrature Colpitts VCO 57 4.2.3 Measurement result 59 4.3 DIFFERENTIAL COLPITTS VCO WITH TRANSFORMER FEEDBACK 63 4.3.1 Introduction 63 4.3.2 Circuit Design 64 4.3.2.1 Single-ended capacitive source degenerated cell 64 4.3.2.2. Differential capacitive source degenerated cell 66 4.3.2.3. Proposed Differential Transformer- based Oscillator 68 4.3.3 Measurement result 71 CHAPTER 5 DISCUSS OF LOW POWER FREQUENCY DIVIDER AND FREQUENCY SYNTHESIZER 75 5.1 INTRODUCTION 75 5.2 THE PROPOSED METHOD FOR LOWER POWER CONSUMPTION OF VCO AND FREQUENCY DIVIDER 76 5.2.1 Architecture of the low power VCO 76 5.2.2 Operation of divider 77 5.2.3 The proposed frequency synthesizer and measurement result 80 5.3 A QUADRATURE CMOS CURRENT REUSED INJECTION LOCKED FREQUENCY DIVIDER 85 5.3.1 Introduction 85 5.3.2 Circuit Design 87 5.3.3 Measurement Results 88 CHAPTER 6 CONCLUSION 92 REFERENCES 94

    [1] B. Razavi, RF microelectronics, Prentice Hall PTR, 1998.
    [2] B. Razavi, Design of analog CMOS integrated circuits, McGraw-Hill,
    2001.
    [3] B. De Muer, M. Borremans, M. Steyaert, and G. Li Puma, “A 2-GHz low
    phase noise integrated LC-VCO set with flicker-noise upconversion
    minimization,” IEEE JSSC, vol 35, pp. 1034–1038, July 2000.
    [4] N. Fong, J.O. Plouchart, N. Zamdmer, D. Liu, L. Wanger, C. Plett, and G.
    Tarr, “A 1 V 3.8–5.7 GHz wide-band VCO with differentially tuned
    accumulation MOS varactors for common-mode noise rejection in CMOS SOI
    technology,” IEEE Trans. MTT, vol. 51, pp. 1952–1959, Aug. 2003.
    [5] J. Craninckx and M. Steyaert, “A 1.8-GHz low-phase noise spiral-LC CMOS
    VCO,” IEEE Symp. VLSI Technology, pp. 30–31, June 1996.
    [6] B. Razavi, “A 1.8 GHz CMOS voltage-controlled oscillator,” in ISSCC
    Tech., pp. 388–389, Feb 1997.
    [7] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC
    oscillators, IEEE JSSC, pp. 717–724, May 1999.
    [8] H. Moon, S. Kang; Y. T. Kim, K. Lee,” A fully differential LC-VCO using a
    new varactor control structure, “ IEEE Microw. Wireless Compon. Lett,
    vol.14 pp. 410–412, Apr. 2004.
    [9] L. Lin, L. Tee, and P. R. Gray, “A 1.4 GHz differential low-noise CMOS
    frequency synthesizer using a wideband PLL architecture,” in ISSCC Tech.
    Dig., pp. 204–205, 2000.
    [10]M. Tiebout, “Low-power low-phase-noise differentially tuned quadrature
    VCO design in standard CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp.
    1018–1024, July 2001.
    [11]J. Kim, J.-O. Plouchart, N. Zamdmer, R. Trzcinski, K. Wu, B. J. Gross, and
    M. Kim, ” A 44GHz differentially tuned VCO with 4GHz tuning range in 0.12
    um SOI CMOS,” Vol. 1. pp.416 - 607 ISSCC. 2005
    [12]J. P. Carr and B. M. Frank,”A 38 GHz accumulation MOS differentially
    tuned VCO design in 0.18-um CMOS,” Silicon Monolithic Integrated Circuits
    in RF Systems, 2006. Digest of Papers. pp.170 – 173 .Topical Meeting on
    Jan 2006.
    [13]Y.-K. Chu, H.-R. Chuang, “A fully integrated 5.8 GHz U-NII band 0.18um
    CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 3, no. 7, pp. 287–
    289, July, 2003.
    [14]R. Aparicio, A Hajimiri., “A noise-shifting differential Colpitts VCO,”
    IEEE J. Solid-State Circuits, vol. 37, pp. 1728–1736, December 2002.
    [15]X. Li.” Low noise design techniques for radio frequency integrated
    circuit” thesis of Doctor of Philosophy University of Washington 2004.
    [16]H. Darabi, A. A Abidi, “Noise in RF-CMOS mixers: A simple physical
    model,” IEEE J. Solid-State Circuits, vol. 35, pp. 15–25, Jan. 2000.
    [17]M.T. Terrovitis, R.G.Meyer, “Noise in Current-Commutating CMOS Mixers,”
    IEEE J. Solid-State Circuits, vol. 34, pp. 772–783, June 1999.
    [18]A. Rofougaran, J. Rael, M. Rofougaran, A.Abidi, “A 900 MHz CMOS LC-
    oscillator with quadrature outputs,” in ISSCC Dig. Tech. Papers, pp. 392–
    393, Feb. 1996.
    [19]P. Andreani, et al., “Analysis and Design of a 1.8-GHz CMOS LC Quadrature
    VCO,” IEEE J. Solid-State Circuits, vol. 37, pp. 1737–1747, December
    2002.
    [20]M. Tiebout, “Low-power low-phase-noise differentially tuned quadrature
    VCO design in standard CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp.
    1018–1024, July 2001.
    [21]P. Vancorenland, et al., “A 1.57-GHz Fully Integrated Very Low-Phase-
    Noise Quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, pp. 653–
    656, May 2002.
    [22]B. De Muer, M. Borremans, M. Steyaert, and G. Li Puma, “A 2-GHz low-phase-
    noise integrated LC-VCO set with flicker-noise upconversion
    minimization,” ,”IEEE J. Solid-State Circuits, vol. 35, pp. 1034–1038,
    July 2000.
    [23]B. Razavi, “A 1.8-GHz CMOS voltage-controlled oscillator,” in ISSCC Dig.
    Tech, pp. 388–389, Papers, 1997.
    [24]J. Craninckx and M. Steyaert, “A fully integrated CMOS DCS-1800 frequency
    synthesizer,” IEEE J. Solid-State Circuits, vol. 33, pp. 2054–2065, Dec.
    1998.
    [25]C. Lam and B. Razavi, “A 2.6-GHz/5.2-GHz CMOS voltage-controlled
    oscillator,” in ISSCC Dig. Tech. Papers, pp. 402–403, Feb 1999.
    [26]A. Ravi, K. Soumyanath, R. E. Bishop, B. A. Bloechel, and L. R. Carley,
    “An optimally transformer coupled, 5GHz quadrature VCO in a 0.18μm digital
    CMOS process,” Symposium on VLSI Circuits Digest of Technical Papers, pp.
    141-144, Jun. 2003.
    [27]S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi,
    “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic
    coupling,” IEEE J. Solid-State Circuits, vol. 38, pp. 1148-1154, Jul.
    2003.
    [28]D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using
    transformer-based LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 13,
    pp. 446-448, Oct. 2003.
    [29]S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz integrated CMOS
    frequency sources with a quadrature VCO using transformers,” IEEE Radio
    Frequency Integrated Circuits Symposium, pp. 269-272, Jun. 2004.
    [30]K., Kwok, H. C. Luong, “Ultra-low-Voltage high-performance CMOS VCOs
    using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, issue
    3, pp.652 – 660, Mar 2005.
    [31]B. Jung, R. Harjani, “High-frequency LC VCO design using capacitive
    degeneration,” IEEE J. Solid-State Circuits, vol. 39, pp. 2359-2370,
    Dec. 2004.
    [32]T. H. Lee, and Ali Hajimiri, “Oscillator Phase Noise: A Tutorial,” IEEE
    J. Solid-State Circuits vol. 35, pp.326-336, March 2000.
    [33]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J.
    Solid-State Circuits vol. 35, pp.1368-1382, Sept. 2000.
    [34]J. Craninckx and Michel S. J. Steyaert, “A 1.8-GHz CMOS low-phase-noise
    voltagecontrolled oscillator with prescaler,” IEEE Journal of Solid-State
    Circuits, vol. 30, no. 12, pp. 1474–1482, December 1995.
    [35]A. Mazzanti, P. Uggetti, and F. Svelto,“Analysis and design of injection-
    locked LC dividers for quadrature generation,” IEEE J. Solid-State
    Circuits, vol. 39, pp. 1425–1433, Sept. 2004.
    [36]F. Gatta, D. Manstretta, P. Rossi, and F. Svelto,“A fully integrated 0.18-
    um CMOS direct conversion receiver front-end with on-chip LO for UMTS,”
    IEEE J. Solid-State Circuits, vol. 39, pp. 15–23, Jan. 2004.
    [37]W. Sun, H. Ma, and W. Wang,“High frequency, low power frequency divider
    with quadrature outputs and low added phase noise,” in Proceed. 7th Int.
    conf. Solid-State and IC Tech., vol.2, pp.1496 – 1499, Oct. 2004.
    [38]A. Ravi, K. Soumyanath, L. R. Carley and R. Bishop, “An Integrated
    10/5GHz injection-locked quadrature LC VCO in a 0.18μm digital CMOS
    process,” ESSCIRC pp:543 – 546,Sept 2002.
    [39]A. Mazzanti, and F. Svelto,“A 1.8-GHz injection-locked quadrature CMOS
    VCO with low phase noise and high phase accuracy,” IEEE Trans. Cir. Sys.,
    vol. 53, pp. 554–560, March 2006.
    [40]H.R. Rategh, H. Samavati, T.H. Lee, “A 5 GHz, 1 mW CMOS voltage
    controlled differential injection locked frequency divider,” Custom
    Integrated Circuits Conference, pp. 517-520 May 1999.
    [41]W. Jian, T. Jun, W. Omar, “Theory of cross-coupled RF oscillator for
    multi- and quadrature-phase signal generation,” ASIC, 2003. Proceed. 5th
    Int.l Conf., vol. 2, pp. 1014-1017, Oct. 2003.
    [42]M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-
    frequency low-power frequency divider,” IEEE J. Solid-State Circuits,
    vol. 39, pp. 1170 – 1174, July 2004.
    [43]Min, B.; Jeong, H “5-GHz CMOS LC VCOs With Wide Tuning Ranges” IEEE
    Microw. Wireless Compon. Lett.s, Volume 15, pp.336 – 338, May 2005.
    [44]C. Samori.; S. Levantino; V. Boccuzzi, “A -94dBc/Hz@l00kHz, fully-
    integrated, 5-GHz, CMOS VCO with 18% tuning range for Bluetooth
    applications” Custom Integrated Circuits, 2001, IEEE Conference on 6-9.
    pp. 201 - 204, May 2001.
    [45]C.S. Li, W. Q. Wang “A Full Integrated 2.4GHz ISM Band 0.25μm CMOS VCO
    with 11.6% Tuning Range” Microwave and Millimeter Wave Technology, 2004.
    ICMMT 4th International Conference on, Proceedings 18-21 pp.598 – 601,
    Aug. 2004.
    [46]B. Chi and B. Shi “Integrated 2.4 GHz CMOS quadrature VCO with
    symmetrical spiral inductors and differential varactors ” Microwave
    Symposium Digest, 2002 IEEE MTT-S International Vol.1 , 2-7 pp. 561 –
    564, June 2002.
    [47]D. Leenaerts’, C. Dijkmans’, M.Thompson” A 0.18 μm CMOS 2.45 GHz Low-
    Power Quadrature VCO with15% Tuning Range” Radio Frequency Integrated
    Circuits (RFIC) Symposium, 2002 IEEE 2-4 pp.67 – 70, June 2002.
    [48]Y.M. Lee; J.S. Lee; R.A. Ju ; K.W. Kim; S.D. Yu “A 1.8-V frequency
    synthesizer for WCDMA in 0.18-/spl mu/m CMOS process” Circuits and
    Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium on Vol 3, 4-7
    pp. 613-616 Aug. 2002.

    無法下載圖示 全文公開日期 2008/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE