簡易檢索 / 詳目顯示

研究生: 黃成凱
Cheng-Kai Huang
論文名稱: 並聯式及多餘軸機器人之運動學、操控性及工作空間之研究
A STUDY ON THE KINEMATICS, DEXTERITY AND WORKSPACE OF PARALLEL AND REDUNDANT MANIPULATORS
指導教授: 蔡高岳
Kao-Yueh Tsai
口試委員: 李志中
Jyh-Jone Lee
劉霆
Tyng Liu
石伊蓓
Yi-Pei Shih
王勵群
Li-chun Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 134
中文關鍵詞: 並聯式機器人多餘軸機器人運動學操控性工作空間
外文關鍵詞: Parallel manipulator, Redundant manipulator, Kinematics, Dexterity, Workspace
相關次數: 點閱:512下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

位移分析、操控性及工作空間為設計工業機器人之三個重要參考指標。經過多年之密集研究,目前在六軸串聯型機器人方面之相關研究已相當完整,本文之研究將集中於並聯式機器人及多餘軸機器人。
設計具有最佳操控性之並聯式機器人一般須求解相當多之非線性聯立方程式,且所得之結果常為不具實用性之設計。本文所提出之模組化設計方法除了每一模組可單獨用來設計三自由度並聯式機器人之外,兩個或兩個以上之模組可串聯或並聯成一六自由度、多餘軸或複合型機器人,設計過程除了不須求解聯立方程式,亦可指定數個尺寸參數值以決定機器人之大小及形狀。
目前決定並聯式機器人工作空間之方法絕大多數以搜尋法求得具球窩接頭機器人之理論工作空間,但所得工作空間內可能存在奇異點且其部份子空間可能因連桿干涉現象而無法到達。本文提出之方法可決定工作空間邊界曲面之方程式並可求得不同類型機器人之可連續運動到達之無奇異點工作空間。
在多餘軸機器人方面,本文提出一個以解二次式求得反位移解之方法,除了有極高之運算速度外,亦可判斷所得之解與奇異點接近之程度。提出之方法可應用於絕大多數末三軸交於一點之n自由度串聯式多餘軸機器人。


Kinematics, dexterity and workspace are three of the most important criteria in designing industrial manipulators. Since 6-DOF serial manipulators have been intensively investigated over the last four decades, this study will focus on parallel and redundant manipulators.
In general, developing isotropic parallel manipulators needs to solve systems of nonlinear equations and most of the obtained results are impractical designs with strange shapes and dimensions. A general design method based on modules is presented in which a module is used to develop 3-DOF isotropic manipulators and two or more modules can be used to develop 6-DOF parallel, redundant or hybrid isotropic manipulators. The method does not need to solve nonlinear equations and some of the design parameters can be specified to obtain manipulators with desired shapes or sizes.
Discretization methods are commonly used to develop the workspace for special parallel manipulators with spherical joints. The obtained results might include singular points and some of its subspaces might not be reached because of link interactions. The proposed methods in this work provide the exact equations to determine the boundary of a singularity-free compatible reachable workspace for any types of manipulators.
For redundant manipulators, this work presents an analytical method that develops inverse kinematic solutions using the solutions of quadratic equations. The proposed method is efficient and can detect to closeness to singular configurations. The method is applicable to most n-DOF redundant manipulators with the last three axes intersected at one point.

中文摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 x 符號索引 xi 第一章 前言 1 1.1 研究動機 1 1.2 文獻回顧 5 1.3 本文架構 9 第二章 理論基礎 11 2.1 奇異值分解 11 2.2 Denavit-Hartenberg連桿參數定義 12 2-3 Denavit-Hartenberg齊次轉換矩陣 12 2.4特殊型6-DOF串聯式機器人之反位移分析基本公式 14 第三章 等向性並聯式機器人之設計 16 3.1 賈式矩陣 16 3.2 3-DOF等向性機器人 18 3.3 6-DOF等向性機器人 24 3.4數值範例 32 3.5 小結 36 第四章 三自由度並聯式機器人可連續運動工作空間 37 4.1 邊界方程式 37 4.2 反位移拘束方程式與無奇異點軸位移空間 43 4.3 邊界曲面與求解方法 47 4.4 數值範例 52 4.4.1 3-RPS機器人 52 4.4.2 3-RRS機器人 55 4.4.3 3-UPU機器人 57 4.4.4 計算時間 60 4.5 小結 61 第五章 六自由度並聯式機器人方位工作空間 63 5.1 邊界曲線與位移分析方程式 63 5.2 球窩接頭限制與連桿干涉 68 5.3 邊界曲線之特徵與求解方法 69 5.4 無奇異點之方位工作空間 79 5.5 數值範例 84 5.6 小結 88 第六章 多餘軸串聯式機器人之位移分析與路徑規劃 90 6.1 虛擬六軸連桿參數及軸位移轉換 90 6.2 奇異點及軸位移限制 96 6.3 路徑規劃 100 6.4 n-DOF機器人 103 6.5 數值範例 104 6.6 小結 111 第七章 結論與建議 113 參考文獻 117

[1]K. Y. Tsai, Y. T. Lo, P. J. Lin, “Compatible reachable workspaces of symmetrical Stewart–Gough parallel manipulators,” Mech. and Mach. Theory, 77 (2014), 111-121.
[2]K. Y. Tsai, J. C. Lin, “Determining the compatible orientation workspace of Stewart–Gough parallel manipulators,” Mech. and Mach. Theory, 41 (10) (2006) 1168–1184.
[3]M. Raghavan, B. Roth, “Inverse Kinematic of the General 6R Manipulator and Related Linkages,” ASME J. of Appl. Mech., 115 (3) (1993), 502-508.
[4]C. A. Klein and T. A. Miklos, “Spatial robotic isotropy,” Int. J. Robot. Res., 10 (4) (1991), 426-437.
[5]K. E. Zanganeh, J. Angeles, “Kinematic isotropy and the optimum design of parallel manipulators,” Int J Robot Res., 16 (2) (1997), 185-196.
[6]K. Y. Tsai, K. D. Huang, “The design of isotropic 6-DOF parallel manipulators using isotropy generators,” Mech. and Mach. Theory, 38 (11) (2003), 1199-1214.
[7]K. Y. Tsai, T. K. Lee, Y. S. Jang, “A new class of isotropic generators for developing 6-DOF isotropic manipulators,” Robotica, 26 (5) (2008), 619-625.
[8]M. V. Kircanski, “Robotic Isotropic and Optimal Bobot Design of Planar Manipulators”, IEEE Int. Conf. on Robotics and Auto., 2 (1994), 1100-1105.
[9]G. Gogu, “Fully-Isotropic Over-Constrained Planar Parallel Manipulator”, IEEE/RSJ Int. Conf. on Intell. Robots and Syst., 4 (2004), 3519-3524.
[10]A. Fattah, A.M. Hasan Ghasemi, “Isotropic Design of Spatial Parallel Manipulators”, The Int. J. of Robotics Res., 21 (9) (2002), 811-824.
[11]C. H. Kuo, J. S. Dai, “A Fully-Isotropic Parallel Orientation Mechanism,” 13th World Congr. in Mech. and Mach. Sci., Mexico (2011).
[12]L. W. Tsai, S. Joshi, “Kinematics and Optimization of a Spatial 3-UPU Parallel Manipulator,” ASME J. of Mech., 122 (2002), 439-446.
[13]X. Wang, L. Baron, G. Cloutier, “Kinematic Modelling and Isotropic Conditions of a Family of Translational Parallel Manipulators,” The Fourth Int. Conf. on Control and Autom, Canada (2003).
[14]J. P. Merlet, Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries,Int. J. of Robot. Res., 18 (9) (1999), 902-916.
[15]F. Pernkopf, M. L. Husty, “Workspace analysis of Stewart–Gough-type parallel manipulators,Proc. of the Inst. of Mech. Eng., Part C: J. of Mech. Eng. Sci., 220 (7) (2006), 1019-1032.
[16]J. S. Zhao, F. Chu, Z. J. Feng,Symmetrical characteristics of the workspace for spatial parallel mechanisms with symmetric structure,Mech. and Mach. Theory, 43 (4) (2008), 427-444 .
[17]C. M. Luh, Adkins, F. A., E. J. Haug, and C. C. Qiu,Working Capability Analysis of Stewart Platforms,J. of Mech. Des., Trans. of the ASME, 118 (2) (1996), 221-227.
[18]I. A. Bonev, J. Ryu, “A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators,” Mech. and Mach. Theory, 36 (1) (2001), 1-13.
[19]I. A. Bonev, J. Ryu, “New approach to orientation workspace analysis of 6-DOF parallel manipulators,” Mech. and Mach. Theory, 36 (1) (2001), 15-28.
[20]Y. Cao, W. Ji, H. Zhou, M. Liu, “Orientation-singularity and nonsingular orientation-workspace analyses of the Stewart-Gough platform using unit quaternion representation,” IEEE Chin. Control and Decis. Conf., Xuzhou (2010), 2282-2287.
[21]Q. Jiang, C. M. Gosselin, “Determination of the maximal singularity-free orientation workspace for the Gough–Stewart platform, ” Mech. and Mach. Theory, 44 (6) (2009) , 1281–1293 .
[22]Q. Jiang, C. M. Gosselin, “Maximal Singularity-Free Total Orientation Workspace of the Gough–Stewart Platform,” ASME J. of Mech. and Robot., 1 (3) (2009), 034501.1-034501.4.
[23]M. Z. Huang, J. L. Thebert, “A study of workspace and singularity characteristics for design of 3-DOF planar parallel robots” Int. J. Adv. Manug. Technol., 51 (5-8) (2010), 789-797.
[24]L. W. Tsai, G. C. Walsh, R. Stamper, ‘‘Kinematics of a Novel Three DOF Translational Platform,’’ Proc. of the 1996 IEEE Int. Conf. On Robot. and Auto., 3446–3451, Minneapolis, MN.
[25]Y. Lu, Y. Shi, B. Hu, “Kinematic analysis of two novel 3UPU I and 3UPU II PKMs,” J. Robot. and Auto. Sys., 56 (4) (2008), 296-305.
[26]X. Kong, C. M. Gosselin, “Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator,” Int. J. Robot. Research, 21 (9) (2002), 791-798.
[27]劉迎春、余躍慶、姜春福,「冗餘度機器人研究動向」,機械設計與研究,第十九卷,第一期,第24-27頁(2003)。
[28]D. Whitney, “The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators,” ASME J. of Dyn. Syst. Meas. and Control, 122 (1972), 303-309.
[29]M. Kircanski, “Symbolic Singular Value Decomposition for Simple Redundant Manipulators and Its Application to Robot Control,” The Int. J. of Robot. Res., 14 (4) (1995), 328-398.
[30]F. T. Cheng, J. S. Chen, F. C Kung, “Study and Resolution of Singularities for 7-DOF Redundant Manipulator,” IEEE Trans. on Ind. Electron., 45 (3) (1998), 469-480.
[31]J. Gallardo-Alvarado, J. M. Rico-Martinez, “Kinematics of a Hyper-redundant Manipulator by Means of Screw Theory,” Proc. of the Inst. of Mech. Eng., Part K: J. of Multi-body Dyn., 223 (4) (2009), 325-334.
[32]C. W. Wampler, “Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-squares Methods,” IEEE Trans. on Syst., Man, and Cybern., 16 (1) (1986), 93-101.
[33]S. L. Wang, K. J. Waldron, “A Study of the Singular Configurations of Serial Manipulators,” J. of Mech. Trans. and Autom. in Des., 109 (1) (1987), 14-20.
[34]Z. Mao, T. C. Hsia, “Obstacle Avoidance Inverse Kinematics Solution of Redundant Robots by Neural Networks,” Robotica, 15 (1) (1997), 3-10.
[35]C. A. Klein, C. H. Huang, “Review of Pseudoinverse Control for Use with Kinematically Redundant Manipulators,” IEEE Trans. on Syst., Man, and Cybern., 13 (3) (1983), 245-250.
[36]M. Bentai, P. Morasso, V. Tagliasco, “The Inverse Kinematic Problem for Anthropomorphic Manipulator Arms,” Trans. of the ASME J. Dyn. Syst. Meas. and Control, 104 (1) (1982), 110-113.
[37]J. Kim, “Kinematics analysis and motion planning for a 7-DOF redundant industrial robot manipulator,” ICCAS 2011 11th Int. Conf., Gyeonggi-do (2011), 522-527.
[38]B. Tondu, “A closed-form inverse kinematic modelling of a 7R anthropomorphic upper limb based on a joint parametrization,” Humanoid Robot. 2006 6th IEEE-RAS Int. Conf., Genova (2006), 390-397.
[39]林俊明,「七自由度多餘軸機器人之位移分析及路徑規劃」,碩士論文,國立臺灣科技大學機械工程研究所 (2013)。
[40]S. A. Joshi, L. W. Tsai, “Jacobian Analysis of Limited-DOF Parallel Manipulators,” J. Mech. Des., 124 (2) (2002), 248-258.
[41]L. W. Tsai, Robot Analysis: The mechanics of serial and parallel manipulators, John Wiley & Sons, New York (1999).
[42]K. Y. Tsai, T. K. Lee, “6-DOF parallel manipulators with better dexterity, rotatability, or singularity-free workspace,” Robotica, 27 (4) (2009), 599-606.
[43]K. Y. Tsai, J. C. Lin, Y. T. Lo, “Six-DOF parallel manipulators with maximal singularity-free joint space or workspace,” Robotica, 32 (3) (2014), 401-411.
[44]K. Y. Tsai, D. Kohli and I. P. Hsu, “Admissible motion of special manipulators,” IEEE Trans. on Robot. Auto., 10 (3) (1994), 386-391.

無法下載圖示 全文公開日期 2021/06/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE