簡易檢索 / 詳目顯示

研究生: 黃光聲
Widison
論文名稱: 氮化鎵薄膜於石墨烯/藍寶石基板 之電性研究
Study of Electrical Properties of GaN Thin Films on Graphene/Sapphire Substrate
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 黃柏仁
Bohr-Ran Huang
陳衛國
Wei-Kuo Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 83
中文關鍵詞: 電性氮化鎵藍寶石於石墨烯
外文關鍵詞: IVT, Ohmic, Positive Temperature Coefficient
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


In this thesis, the electrical properties of the gallium nitride (GaN) have been studied.
Three different samples of GaN were prepared, GaN with GaN nucleation layers (NLs) named sample A, GaN with AlN NLs named sample B, and GaN with AlN NLs with graphene layer named sample C. To characterize the electrical properties of the gallium nitride, aluminium and titanium have been deposited as the ohmic contact and nickel metal as schottky contact, with 50nm, 30nm, and 100nm respectively. Both of ohmic and schottky contact have been deposited by using thermal evaporation with 99.9995 percent purity of the metal slug. The schottky contact itself used mask techniques with 500 micrometer diameter. All deposition process on the thermal evaporator itself has background pressure less than 2X10-6 torr with deposition rate was set at 0.2-0.3nm/s.

From the current-voltage measurement, the ideality factor and schottky barrier height of
the three samples can be extracted. From the CV measurement frequencies were increased
from 2 kHz to 50 kHz, the carrier concentration of the sample A shown little decrease and
have stable trend while for the sample B and C, the capacitance and carrier concentration
were greatly decreased. The GaN thin films also characterized by temperature dependent of IV and CV measurements. From the IVT measurement, sample A have a negative temperature coefficient series resistance, however for the sample B and C, the series resistance has positive temperature coefficient. From the CVT measurement the carrier concentration of
the sample A have a positive temperature coefficient (PTC) while for sample B and C, the
carrier concentration has NTC characteristics. IVT and CVT measurement is correlated with
each other, which mean the series resistance is decrease when the carrier concentration is increase and the carrier concentration is decrease when the series resistance is increased

Abstract......................................................................................................................................ii Figure lists.................................................................................................................................vi Table lists..................................................................................................................................ix Chapter I Introduction................................................................................................................1 1.1 Semiconductor.............................................................................................................1 1.2 III-Nitride semiconductor............................................................................................3 1.3 Light Emitting Diode ..................................................................................................5 1.4 Motivation and research objective .................................................................................10 Chapter II Literature Review ...................................................................................................11 2.1 Recent progress of GaN based LEDs.............................................................................11 2.1.1 GaN based on sapphire substrate.............................................................................14 2.1.2 GaN-based LED on silicon substrate.......................................................................16 2.1.3 GaN-based LED grown on SiC ...............................................................................19 2.1.4 GaN-based LEDs grown on GaAs...........................................................................19 2.1.5 GaN-based LEDs grown on glass............................................................................20 2.1.6 GaN-based LEDs grown on ZnO and other substrates............................................22 2.2. Chemical Vapor Deposition (CVD) growth of graphene film......................................23 Chemical vapor deposition (CVD) on nickel ...................................................................24 Chemical Vapor Deposition on Copper............................................................................25 2.3 GaN based LEDs grown with graphene buffer layer .....................................................26iv 2.4 IV measurement .............................................................................................................27 2.5 CV measurement............................................................................................................28 2.6 Previous Experiment ......................................................................................................29 Chapter III Experimental Details.............................................................................................31 3.1 Graphene growth on sapphire substrate ....................................................................31 3.2 AlN buffer layer on graphene/sapphire substrate......................................................33 3.3 Gallium Nitride growth on AlN/graphene/sapphire..................................................33 3.4 Thermal Evaporation for metal contacts ...................................................................34 3.5 Experiment and measurement instruments ...............................................................37 3.5.1 LPCVD system ..................................................................................................37 3.5.2 RF sputter system...............................................................................................37 3.5.3 MOCVD.............................................................................................................37 3.5.4 Thermal Evaporator ...........................................................................................38 Chapter IV Results and discussions.........................................................................................39 4-1 IV and CV characteristics of GaN samples ...................................................................39 4-1-1 IV Characteristics....................................................................................................39 4-1-2 CV Characteristics ..................................................................................................41 4-2 Temperature dependence of IV and CV of GaN samples..............................................46 4-2-1 Temperature dependence of IV...............................................................................46 4-2-2 Temperature dependence of CV .............................................................................54 Chapter V Conclusion..............................................................................................................61v Acknowledgement ...................................................................................................................62 References................................................................................................................................63

1] Pierret, Robert F. Semiconductor Device Fundamentals. 1996. USA : Addison Wesley.
[2] H. Morkoc. Nitride Semiconductors and Devices. Springer, Heidelberg (1999)
[3] S. Nakamura. The Blue Laser Diode. Springer (2000)
[4] S.J. Pearton (Ed.), GaN and Related Materials, Gordon and Breach, New York (1997)
[5] B. Gil (Ed.), Group III Nitride Semiconductor Compounds, Clarendon
Press, Oxford (1998)
[6] J.I. Pankove, T.D. Moustakas (Eds.), GaN, vol. 1, Academic Press, New York (1998)
[7] Roosbroeck W. Van, and W. Shockley, "Photon-radiative recombination of electrons and
holes in germanium", Physical Review, Vol. 94, No. 6, pp. 1558; June 1954.
[8] Matzen, W. T., "Semiconductor Single-Crystal Circuit Development." Rep. No. ASDTDR-63- 281. Texas Instruments Inc., Accession Number: AD0411614; March 1963.
[9] Biard J. R., and G. E. Pittman, "Semiconductor Radiant Diode", U.S. Patent 3293513,
Issued: Dec. 20th, 1966.
[10] K. Xu, A. Yoshikawa, Appl. Phys. Lett. 83 (2003) 251.
[11] J. Wu, W. Walukiewicz, Superlattices Microstruct. 34 (2003) 63.
[12] V. Yu Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emtsev, S.V. Ivanov, F. Bechstedt,
J. Furthmuller, H. Harima, A.V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Phys. Status
Solidi(b) 229 (2002) R1.
[13] J. Wu, W. Walukiewicz, K.M. Yu, J.W. Arger III, E.E. Haller, H. Lu, W.J. Schaff, Y.
Saito, Y. Nanishi, Appl. Phys. Lett. 80 (2002) 3967.
[14] A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys. 94 (2003) 2779.
[15] Y. Nanishi, Y. Saito, T. Yamaguchi, Jpn. J. Appl. Phys. 42 (2003) 2549.
[16] Nakamura S, Senoh M and Mukai T. 1993. p-GaN/n-inGaN/n-GaN doubleheterostructure blue-light emitting diodes. Japan. J. Appl. Phys. 32:L864
[17] Zhu D, Wallis D J and Humphreys C J. 2013. Prospects of III-Nitride optoelectronics
grown on Si. Rep. Prog. Phys. 76:106501
[18] Shin-H, Y, Kwon-S, K, Chang-Y, I, Cho-M, J and Park-K, H. 2009. Reducing
dislocation density in GaN films using a cone-shaped patterned sapphire substrate. J. Cryst.
Growth 311:4167
[19] Dorf-R, C. 2004. The Electrical Engineering Handbook Series.Boca Raton, FL:CRC
Press
[20] Wang W, Yang W, Wang H, Li G. 2014. Epitaxial Growth of GaN films on
unconventional oxide substrates. J. Mater. Chem. C 2-9342-58
[21] Ohta J, Fujioka H, Sumiya M, Koinuma H and Oshima M. 2001. Epitaxial Growth of
AlN on (La,Sr)(Al,Ta)O3 substrate by laser MBE. J. Cryst. Growth 225-73
[22] Liu Z, Wei T, Guo E, Yi X, Wang L, et al. 2011. Efficiency drop in InGaN/GaN
multiple-quantum-well blue light-emitting-diodes grown on free-standing GaN substrate.
Appl. Phys. Lett. 99-091104.
[23] Nakamura, S. 1998. The roles of structural imperfections in InGaN-based blue lightemitting diodes and laser diodes. Science 281-5379. p. 956-961.
[24] Taniyasu Y, Kasu M and Makimoto T. 2006. An aluminium nitride light emitting diode
with a wavelength of 210 nanometres. Nature 441. p. 352.
[25] Liu L and Edgar J. H. 2002. Substrates for gallium nitride epitaxy. Mater. Sci. Eng. R 36
p.61
[26] Ishikawa H, Yamamoto K, Egawa T, Soga T, et al. 1998. Thermal stability of GaN on (1
1 1) Si substrate. J. Cryst. Growth 189/190 p.178
[27] Zhang J C, et al. 2005. Influence of dislocations on photoluminescence of InGaN/GaN
multiple quantum wells. Appl. Phys. Lett. 87-071908
[28] Abe Y, Fujimori H, Watanabe A, Ohmori N, Komiyama J, et al. 2012. Defect
propagation from 3C-SiC intermediate layers to III-Nitride epilayers. Japan. J. Appl. Phys.
51-03560365
[29] Komiyama J, Abe Y, Suzuki S, Nakanishi H and Koukitu A. 2009. MOVPE of AlN-free
hexagonal GaN/cubic SiC/Si heterostructures for vertical devices. J. Cryst. Growth 311-2840
[30] Nishimura S, Matsumoto S and Terashima K. 2004. GaN on Si substrate for LED and
LD applications. Phys. Status Solidi c 1-238
[31] Lahreche H, Vennegues P, Tottereau O, Laugt M, Lorenzini P, Leroux M, et, al. 2000.
Optimization of AlN and GaN growth by metal organic vapour-phase epitaxy (MOVPE) on
Si (1 1 1). J. Cryst. Growth 217-13
[32] Dadgar A, et al. 2003. Metalorganic chemical vapor phase epitaxy of gallium nitride on
silicon. Phys. Status Solidi C 6 p.1583
[33] Kukushkin S A, Osipov A V, Bessolov V N, Medvedev B K, Nevolin V K and Tcarik K
A. 2008. Substrates for epitaxy of gallium nitride: new materials and techniques. Rev. Adv.
Mater. Sci. 17 1
[34] Raghavan S and Redwing J M. 2004. In situ stress measurements during the MOCVD
growth of AlN buffer layers on (1 1 1)Si substrates. J. Cryst. Growth 261 p.294.
[35] Kim M H, Do Y G, Kang H C, Noh D Y and Park S J. 2001. Effects of step-graded
AlxGa1-xN interlayer on properties of GaN grown on Si(1 1 1) using ultra high vacuum
chemical vapor deposition. Appl. Phys. Lett. 79 p.2713
[36] Dadgrar A, Hempel T, Blaesing J, Schulz O, Fritze S, Christen J and Krost A. 2011.
Improving GaN-on-silicon properties for GaN device epitaxy. Phys. Status Solidi c 8 1503
[37] Liu Y, Qin F, Zhang D, et al. 2013. Low-temperature growth of highly c-oriented GaN
films on Cu coated glass substrates with ECR-PEMOCVD [J]. Journal of Crystal Growth 368:
p.92-96
[38] Choi J H, Zoulkarneev A, Kim S I, et al. 2011. Nearly single crystalline GaN lightemitting diodes on amourphous glass substrates [J]. Nature Photonics, 5(12) p.763-769
[39] S.K. Davidssona, T.G. Andersson, H. Zirath. 2002. Initial Growth of GaN on α-Al2O3
(0001) by molecular beam epitaxy. Appl. Phys. Lett. 81 p. 66466
[40] D. Doppalapudi, E. Illiopoulos, S. N. Basu, T. D. Moustakas. 1999. Epitaxial growth of
gallium nitride thin films on A-plane sapphire by molecular beam epitaxy. J. Appl Phys., 85
p.3582
[41] C.R. Eddy Jr., T.D. Moustakas, J. Scanlon. 1993. Growth of gallium nitride thin films by
electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy. J. Appl.
[42] R.R. Reeber, K. Wang. 2000. Lattice parameters and thermal expansion of important
semiconductors and their substrates. Mater. Res. Soc. Symp., 622 p. T6.35.1
[43] D.I. Florescu, V.M. Asnin, F.H. Pollak, A.M. Jones, J.C. Ramer, M.J. Schurman, I.
Ferguson. 2000. Thermal conductivity of fully and partially coalesced lateral epitaxial
overgrown GaN/sapphire (001) by scanning thermal microscopy. Appl. Phys. Lett., 77 p.
1464
[44] W. Qian, M. Skowronski, G.R. Rohrer. Structural defects and their relationship to
nucleation of GaN thin films. D.K. Gaskill, C.D. Brandt, R.J. Nemanich (Eds.), Material
Research Society Symposium Proceedings, Pittsburgh PA, vol. 423 (1996), pp. 475-486
[45] A. B. Kuzmenko, E. V. Heumen, F. Carbone, and D. V. D Marel. 2008. Universal
optical conductance of graphite, Phys. Rev. Lett., 100, 117401
[46] A. K. Geim, and K. S. Novoselov. 2007. The rise of graphene, Nature Mater.,6 p.183.
[47] H. Shioyama, H. Sakakihara, N. Iwashita, K. Tatsumi, and Y. Sawada.1994. On the
generation of fine metallic particle om graphite matrix. J. Mater. Sci. Lett., 13 p.1056
[48] A. A. Balandin, S. Ghosh, W. Bao, et al. 2008. Superior thermal conductivity of single
layer graphene. Nano Letters, 2008, vol. 8, pp. 902-907.
[49] S. Ghosh, I. Calizo, D. Teweldebrhan, et. al. 2008. Extremely high thermal conductivity
of graphene: Prospect for thermal management applications in nanoelectronic circuits.
Applied Physics Letter vol. 92, p. 151911
[50] Stankovic S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via
chemical reduction of exfoliated graphite oxide. [J]. Carbon, 2007, 45(7) p.1558-1565
[51] Obraztsov A N. 2009. Chemical Vapor Deposition: making graphene on a large scale. [J]
Nature nanotechnology 4(4) p.212-21367
[52] Sun Z, Yan Z, Yao J, et al. 2010. Growth of Graphene from solid carbon source. [J].
Nature, 468(7323) p.549-552
[53] Wang Y, Zheng Y, Xu X, et al. 2011. Electrochemical delamination of CVD-grown
graphene film: toward the recyclable use of copper catalyst. [J]. ACS nano 5(12) p.9927-9933
[54] J.B. MacChesney, P.M. Bridenbaugh, P.B. O'Connor. Thermal stability of indium nitride
at elevated temperatures and nitrogen pressure. Mater. Res. Bull., 5 (1970), p. 783
[55] G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande. The intrinsic thermal
conductivity of AlN. J. Phys. Chem. Solids, 48 (1987), p. 641
[56] V.Yu. Davydov, A.A. Klochikhin, R.P. Seisyan, V.V. Emtsev, S.V. Ivanov, F. Bechstedt,
et al. absorption and emission of hexagonal InN. Evidence of narrow fundamental band
gap.Phys. Status Solidi (b), 229 (2002), p. R1
[57] S. Krukowski, A. Witek, J. Adamczyk, J. Jun, M. Bockowski, I. Grzegory, B. Lucznik,
G. Nowak, M. Wroblewski, A. Presz, S. Gierlotka, S. Stelmach, B. Palosz, S. Porowski, P.
Zinn. J. Phys. Chem. Solids, 59 (1998), p. 289
[58] L.M. Belyaev. Rubby and Sapphire. Amerind Publishing Co., New Delhi (1980)
(translated from Russian, RUBIN ISAPFIR, Nauka Publishers, Moscow, 1974), p. 1.
[59] O. Nilsson, H. Mehling, R. Horn, J. Fricke, R. Hofmann, S.G. Muller, R. Eckstein, D.
Hofmann. High Temperatures–High Pressures, 29 (1997), p. 73
[60] E.L. Kern, D.W. Hamill, H.W. Deem, H.D. Sheets. Mater. Res. Bull., 4 (1969), p. 25
[61] T. Yamaguchi, T. Araki, Y. Saito, K. Kano, H. Kanazawa, Y. Nanishi, N. Teraguchi, A.
Suzuki. Effect of sapphire substrate nitridation on determining rotation domain in GaN
growth. J. Cryst. Growth, 237 (2002), p. 993
[62] N. Grandjean, J. Massies, P. Vennegues, M. Laugt, M. Leroux. Epitaxial relationships
between GaN and Al2O3 (0001) substrates. Appl. Phys. Lett., 70 (1997), p. 643
[63] C. Barth, M. Reichling. Imaging the atomic arrangements on the high-temperature
reconstructed α-Al2O3 (0001) surface. Nature, 414 (2001), p. 54
[64] A. Yoshikawa, K. Xu. Opt. Mater., 23 (2003), p. 768
[65] A. Thamm, O. Brandt, Y. Takemura, A. Trampert, K.H. Ploog. Reactive molecularbeam epitaxy of GaN layers directly on 6H-SiC(0001). Appl. Phys. Lett., 75 (1999), p. 944
[66] J. Lu, L. Haworth, D.I. Westwood, J.E. Macdonald. Initial stages of molecular-beam
epitaxy growth on 6H-SiC(0001). Appl. Phys. Lett., 78 (2001), p. 1080
[67] J. Kato, S. Tanaka, S. Yamada, I. Suemune. Structure anisotropy in GaN films grown on
vicinal 4H-SiC surface by metallorganic molecular-beam epitaxy. Appl. Phys. Lett., 83
(2003), p. 1569
[68] Q. Xue, Q.K. Xue, Y. Hasegawa, I.S.T. Tsong, T. Sakurai. Two step preparation of 6HSiC(0001) surface for epitaxial growth of GaN thin film. Appl. Phys. Lett., 74 (1999), p.
2468
[69] Z.P. Guan, A.L. Cai, J.S. Cabalu, H.L. Porter, S. Huang. Molecular beam epitaxy growth
of GaN on C-terminated 6H-SiC(0001) surface. Appl. Phys. Lett., 77 (2000), p. 2491
[70] H. Tang, J.A. Bardwell, J.B. Webb, S. Moisa, J. Fraser, S. Rolfe. Selective growth of
GaN on a SiC substrate patterned with an AlN seed layer by ammonia molecular-beam
epitaxy.Appl. Phys. Lett., 79 (2001), p. 2764
[71] J.B. Webb, H. Tang, J.A. Bardwell, P. Coleridge. Growth of high mobility GaN and
AlGaN/GaN high electron mobility transistor structures on 4H-SiC by ammonia molecular
beam epitaxy. Appl. Phys. Lett., 78 (2001), p. 3845
[72] O. Brandt, R. Muralidharan, P. Waltereit, A. Thamm, A. Trampert, H. Von Kiedrowski,
K.H. Ploog. Critical issues for the growth of high-quality (Al,Ga)N/GaN and GaN/(In,Ga)N
heterostructures on SiC(0001) by molecular-beam epitaxy. Appl. Phys. Lett., 75 (1999), p.
4019
[73] J. Suda, K. Miura, M. Honaga, Y. Nishi. Effect of 6H-SiC surface reconstruction on
lattice relaxation of AlN buffer layers in molecular-beam epitaxial growth of GaN. Appl.
Phys. Lett., 81 (2002), p. 5141
[74] Z.P. Guan, A.L. Cai, H. Porter, J. Cabalu, J. Chen, S. Huang, R.E. Giedd. GaN grown on
two-step cleaned C-terminated 6H-SiC by molecular-beam epitaxy. J. Vac. Sci. Technol. A,
19 (2001), p. 28069
[75] V. Ramachandran, A.R. Smith, R.M. Feenstra, D.W. Greve. Temperature dependence of
molecular beam epitaxy of GaN on SiC (0001). J. Vac. Sci. Technol. A, 17 (1999), p. 1289
[76] V. Ramachandran, R.M. Feenstra, W.L. Sarney, L. Salamanca-Riba, D.W. Greve.
Optimized structural properties of wurtzite GaN on SiC(0001) grown by molecular beam
epitaxy. J. Vac. Sci. Technol. A, 18 (2000), p. 1915
[77] Q. Xue, Q.K. Xue, R.Z. Bakhtizin, Y. Hasegawa, I.S.T. Tsong, T. Sakurai. Atomistic
investigation of various GaN (0001) phases on the 6H-SiC (0001) surface. Phys. Rev. B, 59
(1999), p. 12604
[78] M. Yoshimoto, A. Hatanaka, H. Ito, H. Matsunami. GaN growth on sapphire and 6HSiC by metalorganic molecular beam epitaxy. J. Cryst. Growth, 188 (1998), p. 92
[79] T. Honda, N. Fujita, K. Maki, Y. Yamamoto, H. Kawanishi. Initial growth monitoring of
GaN epitaxy on 6H-SiC by metal-organic molecular beam epitaxy. J. Cryst. Growth, 209
(2000), p. 392
[80] K. Jeganathan, M. Shimuzu, T. Ide, H. Okumura. Control of GaN surface morphologies
grown on 6H-SiC(0001) using plasma-assisted molecular beam epitaxy. J. Cryst. Growth,
244 (2002), p. 33
[81] P. Ruterana, P. Vermaut, V. Potin, G. Nouet, A. Botchkarev, A. Salvador, H. Morkoc.
The structure of GaN layers grown on SiC and sapphire by molecular beam epitaxy. Mater.
Sci. Eng. B, 50 (1997), p. 72
[82] Y. Cui, L. Li. Suppression of spiral growth in molecular beam epitaxy of GaN on vicinal
6H-SiC(0001). Phys. Status Solidi (a), 2 (2001), p. 583
[83] Z. Li, H. Chen, H. Liu, N. Yang, M. Zhang, L. Wan, Q. Huang, J. Zhou, K. Tao.
Influence of AlN buffer on phase structure of GaN on GaAs (001) grown by radio-frequency
molecular beam epitaxy. Jpn. J. Appl. Phys. Part 1, 39 (2000), p. 4704
[84] Y. Park, M.J. Cich, R. Zhao, P. Specht, E.R. Weber, E. Stach, S. Nozaki. Analysis of
twin defects in GaAs(111)B molecular beam epitaxy growth. J. Vac. Sci. Technol. B, 18
(2000), p. 1566
[85] H. Hayashi, A. Hayashida, A. Jia, K. Takahashi, A. Yoshikawa. Experimental
investigation of inclusion of hegaxonal GaN phase-domain by varying nitrogen-beam70
direction to a <1 1 1> axis in MBE growth of cubic GaN. J. Cryst. Growth, 227 (2001), p.
404
[86] A. Georgakilas, K. Amimer, P. Tzanetakis, Z. Hatzopoulos, M. Cengher, B. Peca, Zs.
Czigany, L. Toth, M.V. Baidakova, A.V. Sakharov, V. Yu. Davydov. Correlation of the
structural and optical properties of GaN grown on vicinal (0 0 1) GaAs substrates with the
plasma-assisted MBE growth conditions. J. Cryst. Growth, 227 (2001), p. 410
[87] I. Aksenov, H. Iwai, Y. Nakada, H. Okumura. Nitridation of GaAs(0001) surface: auger
electron spectroscopy and reflection high-energy electron diffraction. J. Vac. Sci. Technol. B,
17 (1999), p. 1525
[88] M. Losurdo, D. Giuva, G. Bruno, S. Huang, T.H. Kim, A.S. Brown. The surface
modification and reactivity of LiGaO2 substrates during GaN epitaxy. J. Cryst. Growth, 264
(2004), p. 139
[89] M.H. Kima, F.S. Juanga, Y.G. Honga, C.W. Tua, S.J. Park. J. Cryst. Growth, 251 (2003),
p. 465
[90] K. Ohnishi, H. Tampo, Y. Imanishi, K. Yamada, K. Asami, H. Asahi. Gas Source
molecular-beam epitaxy growth of GaN/GaP supperlattices and GaN layer on GaP(1 1 1)A
substrates. J. Cryst. Growth, 243 (2002), p. 283
[91] W.A. Doolittle, T. Kropewnicki, C. Carter-Coman, S. Stock, P. Kohl, N.M. Jokerst, R.A.
Metzger, S. Kang, K.K. Lee, G. May, A.S. Brown. Growth of GaN on lithium gallate
substrates for development of a GaN thin compliant substrate. J. Vac. Sci. Technol. B, 16
(1998), p. 1300
[92] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi,
B.H. Hong. Large-scale pattern growth of graphene films for stretchable transparent
electrodes. Nature, 457 (2009), pp. 706-710
[93] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong
Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition.
Nano Lett, 9 (2009), pp. 30-35
[94] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.-S. Pei. Graphene segregated on Ni
surfaces and transferred to insulators. Appl Phys Lett, 93 (2008), p. 11310371
[95] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng,
X. Bao, H.-M. Cheng. Repeated growth and bubbling transfer of graphene with millimetresize single-crystal grains using platinum. Nat Commun, 3 (2012), p. 699
[96] H. Ago, Y. Ito, N. Mizuta, K. Yoshida, B. Hu, C.M. Orofeo, M. Tsuji, K.-I. Ikeda, S.
Mizuno. Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt
film crystallized on sapphire. ACS Nano, 4 (2010), pp. 7407-7414
[97] C. Vo-Van, A. Kimouche, A. Reserbat-Plantey, O. Fruchart, P. Bayle-Guillemaud, N.
Bendiab, J. Coraux. Epitaxial graphene prepared by chemical vapor deposition on single
crystal thin iridium films on sapphire. Appl Phys Lett, 98 (2011), p. 181903
[98] H. Hattab, A.T. N’Diaye, D. Wall, C. Klein, G. Jnawali, J. Coraux, C. Busse, R. Van
Gastel, B. Poelsema, T. Michely, F.-J. Meyer Zu Heringdorf, M. Horn-Von Hoegen.
Interplay of wrinkles, strain, and lattice parameter in graphene on iridium. Nano Lett, 12
(2011), pp. 678-682
[99] P.W. Sutter, P.M. Albrecht, E.A. Sutter. Graphene growth on epitaxial Ru thin films on
sapphire. Appl Phys Lett, 97 (2010), pp. 213101-213103
[100] P.W. Sutter, P.M. Albrecht, E.A. Sutter. Graphene growth on epitaxial Ru thin films on
sapphire. Appl Phys Lett, 97 (2010), pp. 213101-213103
[101] X. Li, W. Cai, L. Colombo, R.S. Ruoff. Evolution of graphene growth on Ni and Cu by
carbon isotope labeling. Nano Lett, 9 (2009), pp. 4268-4272
[102] J.C. Shelton, H.R. Patil, J.M. Blakely. Equilibrium segregation of carbon to a nickel
(111) surface: a surface phase transition. Surf Sci, 43 (1974), pp. 493-520
[103] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong.
Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition.
Nano Lett, 9 (2009), pp. 30-35
[104] Y. Zhang, L. Gomez, F.N. Ishikawa, A. Madaria, K. Ryu, C. Wang, A. Badmaev, C.
Zhou. Comparison of graphene growth on single-crystalline and polycrystalline Ni by
chemical vapor deposition. J Phys Chem Lett, 1 (2010), pp. 3101-310772
[105] Y. Zhang, T. Gao, S. Xie, B. Dai, L. Fu, Y. Gao, Y. Chen, M. Liu, Z. Liu. Different
growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni
films: a scanning tunneling microscopy study. Nano Res, 5 (2012), pp. 402-411
[106] X. Gu, M.A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, J. Nause.
GaN epitaxy on thermally treated c-plane bulk ZnO substrates with O and Zn faces. Appl.
Phys. Lett., 84 (2004), p. 2268
[107] F. Hamdani, A. Botchkarev, W. Kim, H. Morkoc, M. Yeadon, J.M. Gibson, D.C.
Reynolds, D.C. Look, K. Evans, C.W. Litton, W.C. Mitchel, P. Hemenger. Optical properties
of GaN grown on ZnO by reactive molecular beam epitaxy. Appl. Phys. Lett., 70 (1997), p.
467
[108] E.S. Hellman, D.N.E. Buchanan, D. Wiesmann, I. Brener. Growth of Ga-face and Nface GaN films using ZnO substrates. MRS Internet J. Nitride Semicond. Res., 1 (1996), p.
16
[109] F. Hamdani, A.E. Botchkarev, H. Tang, W. Kim, H. Morkoc. Effect of buffer layer and
substrate surface polarity on the growth by molecular beam epitaxy of GaN on ZnO. Appl.
Phys. Lett., 71 (1997), p. 3111
[110] T. P. Ong, F. Xiong, R. P. H. Chang and C. W. J. White, J. Mater. Res., 1992, 7, 2429
[111] S.-T. Lee, S. Chen, G. Braunstein, X. Feng, I. Bello and W. M. Lau. Heteroepitaxy of
carbon on copper by high-temperature ion implantation. Appl. Phys. Lett., 1991, 59, 785

無法下載圖示 全文公開日期 2024/01/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE