簡易檢索 / 詳目顯示

研究生: 張棋傑
Chi-Chieh Chang
論文名稱: 氮化鎵垂直共振腔面射型雷射與發光二極體之製造與特性量測
Fabrication and characterization of GaN-based vertical-cavity surface-emitting lasers and light-emitting diodes
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 李三良
San-Liang Lee
廖顯奎
Shien-Kuei Liaw
余長治
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 107
中文關鍵詞: 氮化鎵垂直共振腔面射型雷射發光二極體
外文關鍵詞: GaN-based vertical-cavity surface-emitting laser, light-emitting diodes
相關次數: 點閱:405下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首度以矽擴散電流阻擋層的結構實現了能在室溫(Room temperature, RT) 20°C (293K)的環境下,連續波(Continuous wave, CW)操作的氮化鎵垂直共振腔面射型雷射(Vertical- cavity surface- emitting lasers, VCSEL),不但有效縮小電流侷限孔徑直徑至3um,且元件具有相當高的良率。
    透過矽擴散電流阻擋層良好的電流侷限能力,不論是5um或是3um電流孔徑尺寸的VCSEL元件,我們大幅降低閾值電流至約0.5mA,明顯低於目前世界上已知的VCSEL研究結果,其雷射頻譜的旁模抑制比最高可達到約11dB,證明元件的頻譜特性為單縱模(Single longitudinal mode)操作;遠場量測的部份,電流孔徑尺寸為5um的元件其半功率角(Half-power angle)約為11°,指向性佳,而扣除頻譜自發放射強度後得到發散角(Divergence angle)約為14°,電流孔徑尺寸為3um的元件發散角約為6°,反推橫模寬度(Beam waist)約為2.5um,說明雷射在空間上也為單空間模態(Single spatial mode)。
    我們同樣以矽擴散電流阻擋層結構研製共振腔式發光二極體,與製鍍上布拉格反射鏡前比較,頻譜的半高寬由約16nm縮窄為3~5nm,並且最高可提升約46%的亮度,未散熱封裝前,其最大光輸出功率可達到0.53mW,元件在不同環境溫度下其頻譜峰值波長和半高寬也相當穩定,而在遠場量測元件的半功率角約為45°,比起一般LED的60°半功率角,具有更好的指向性。


    In this paper, room-temperature (293K) continuous-wave operation of GaN-based vertical-cavity surface-emitting lasers (VCSEL) featuring a Si-diffusion-defined confinement structure was realized for the first time. Not only the current confinement aperture was reduced to 3um in diameter effectively, but also the yield of VCSEL fabrication was quite high.
    We reduced the threshold current to about 0.5mA for both 5um- and 3um-diameter VCSELs that is attributed to the superior current confinement capability of Si-diffusion-defined structure. This threshold value is record low of the published VCSEL results worldwide. The side mode suppression ratio of the lasing spectrum can reach up to about 11dB, proving that the VCSEL was operated in a single longitudinal mode. In the far-field measurement, devices of 5um-current aperture size had a half-power angle of about 11° indicating good directionality. After subtraction of the amplified spontaneous emission background, the divergence angle of the laser beam was about 14°. The devices of 3um-current aperture size exhibited a divergence angle of about 6° corresponding to a beam waist of about 2.5um indicating that the operation mode was single spatial mode.
    We also fabricated GaN-based Resonant-cavity LEDs (RCLED) featuring a Si-diffusion-defined current blocking layer and compared the spectral full width at half maximum (FWHM) before and after depositing top dielectric distributed Bragg reflector. The FWHM was reduced from about 16nm to 3~5nm and the brightness was increased up to 46%. The unpacked maximum light output power was about 0.53mW. The emission peak wavelength and the spectral FWHM at various temperatures and current levels were remained quite stable. The half-power angle was 45° approximately. Compared with general LEDs, our RCLED has better directionality.

    摘要 I Abstract III 致謝 IV 目錄 V 圖片目錄 VIII 表格目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 氮化鎵材料之簡介 3 1.3 氮化鎵垂直共振腔面射型雷射文獻回顧 7 第二章 垂直共振腔面射型光源原理 9 2.1 垂直共振腔面射型雷射原理 9 2.2共振腔式發光二極體原理 12 2.3 布拉格反射鏡結構介紹 13 2.3.1布拉格反射鏡 13 2.3.2 布拉格反射鏡結構之設計 14 2.4 電流侷限結構 18 2.4.1電流侷限結構簡介[24] 18 2.5 矽擴散型電流侷限結構 22 第三章 元件製程與儀器介紹 24 3.1垂直共振腔面射型光源元件製程 24 3.2 製程儀器介紹 34 3.2.1感應耦合電漿式離子蝕刻機(ICP-RIE) 34 3.2.2 電子束蒸鍍機(E-beam evaporator) 36 3.2.3 射頻濺鍍機(RF sputter) 37 3.3量測儀器介紹 40 3.3.1光激發螢光(Photoluminescence, PL)量測系統 40 3.3.2 L-I與I-V量測系統 41 3.3.3 變溫光譜分析量測系統 43 3.3.4變角度電致發光(electroluminescence, EL)量測系統 44 第四章 實驗結果與討論 46 4.1 VCSEL元件量測結果 50 4.1.1透明導電層完成後量測 50 4.1.2 介電質布拉格反射鏡完成後量測 51 4.1.3 VCSEL元件近場量測 63 4.1.4變角度遠場量測 67 4.2 RCLED元件量測結果 71 4.2.1透明導電層完成後量測 71 4.2.2 介電質布拉格反射鏡完成後量測 72 4.2.3 定電流變溫量測 81 4.2.4 變角度遠場量測 84 第五章 結論與未來展望 88 參考文獻 91

    [1] 余孟純,「氮化鎵垂直共振腔面射型光源之製造與特性量測」,國立台灣科技大學電子工程所碩士學位論文,台北,2014。
    [2] 林家煥,「研製擴散型侷限結構之氮化鎵垂直共振腔面射型光源」,國立台灣科技大學電子工程所碩士學位論文,台北,2013。
    [3] 黃景勤,「以二氧化矽次微米球研製氮化鎵垂直共振腔面射型光源之側向侷限結構」,國立台灣科技大學電子工程所碩士學位論文,台北,2013。
    [4] Pinghui Sophia Yeh, Meng-Chun Yu, Jia-Huan Lin, Ching-Chin Huang, Yen-Chao Liao, Da-Wei Lin, Jia-Rong Fan, and Hao-Chung Kuo, " GaN-based Resonant-Cavity LEDs Featuring a Si-Diffusiom-Defined Current Blocking Layer, " IEEE Photonics Technology Letters, vol. 26, NO. 24, December 15, 2014.
    [5] D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, et al., "Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature," Applied Physics Express, vol. 4, p. 072103, 2011.
    [6] G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, and V. Y. Davydov, " Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy," Applied Physics Letters, vol. 84, pp. 452, 2004.
    [7] E. Fred. Schubert, "Light emitting diode," Cambridge University Press, New York, 2006.
    [8] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)," Japanese Journal of Applied Physics, vol. 28, pp. L2112-L2114, 1989.
    [9] I. Akasaki, H.Amano, K. Koide, and K. Manabe, "GaN based UV/blue light-emitting devices," Inst. Phys. Conf. Ser., vol.129, pp.851-856, 1992.
    [10] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal Annealing Effects on P-Type Mg-Doped GaN Films," Japanese Journal of Applied Physics, vol. 31, pp. L139-L142, 1992.
    [11] S. Nakamura, M. Senoh, and T. Mukai, "High‐power InGaN/GaN double‐heterostructure violet light emitting diodes," Applied Physics Letters, vol. 62, pp. 2390-2392, 1993.
    [12] S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, et al., "Violet InGaN/GaN/AlGaN-Based Laser Diodes with an Output Power of 420 mW," Japanese Journal of Applied Physics, vol. 37, pp. L627-L629, 1998.
    [13] J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn, "An optically pumped GaN–AlGaN vertical cavity surface emitting laser," Applied Physics Letters, vol. 69, pp. 1-3, 1996.
    [14] C.-C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, et al., "Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector," Applied Physics Letters, vol. 87, pp.081105-081105-3, 2005.
    [15] J.-T. Chu, T.-C. Lu, M. You, B.-J. Su, C.-C. Kao, H.-C. Kuo, and S. C. Wang, "Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers," Applied Physics Letters, vol. 89, pp.121112-121112-3, 2006.
    [16] T.-C. Lu, C.-C. Kao,H.-C. Kuo, G.-S. Huang, and S.-C. Wang, "CW lasing of current injection blue GaN-based vertical cavity surface emitting laser," Applied Physics Letters, vol. 92, pp. 141102-141102-3, 2008.
    [17] T.-C. Lu, S.-W. Chen, T.-T. Wu, P.-M. Tu, C.-K. Chen, C.-H. Chen, et al., "Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature," Applied Physics Letters, vol. 97, pp. 071114-071114-3, 2010.
    [18] Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, "Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection," Applied Physics Express, vol. 1, p. 121102, 2008.
    [19] K. Omae, Y. Higuchi, K. Nakagawa, H. Matsumura, and T. Mukai, "Improvement in Lasing Characteristics of GaN-based Vertical-Cavity Surface-Emitting Lasers Fabricated Using a GaN Substrate," Applied Physics Express, vol. 2, p. 052101, 2009.
    [20] M. Ogura, W. Hsin, M. C. Wu, S. Wang, J. R. Whinnery, S. C. Wang, et al., "Surface‐emitting laser diode with vertical GaAs/GaAlAs quarter‐wavelength multilayers and lateral buried heterostructure," Applied Physics Letters, vol. 51, pp. 1655-1657, 1987.
    [21] Y.-K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, et al., "A vertical cavity light emitting InGaN quantum well heterostructure," Applied Physics Letters, vol. 74, pp. 3441-3443, 1999.
    [22] Takao Someya,Koichi Tachibana,Jungkeun Lee,Takeshi Kamiya,and Yasuhiko Arakawa, "Lasing Emission from an In0.1Ga0.9N Vertical Cavity Surface Emitting Laser," Japanese Journal of Applied Physics, vol. 37, pp. L1424-L1426, 1998.
    [23] T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, "Room Temperature Lasing at Blue Wavelengths in Gallium Nitride Microcavities," Science, vol. 285, pp. 1905-1906, 1999.
    [24] 盧廷昌、王興宗,半導體雷射技術,五南圖書,台北,2010。
    [25] 葉秉慧、余孟純、林家煥、黃景勤,“一種以矽擴散型電流阻擋層製作氮化鎵垂直共振腔面射型發光元件的方法”,中華民國與美國發明專利申請中。
    [26] 陳昱庭,「主動光學元件之功能性鏡面鍍膜」,國立台灣科技大學電子工程所碩士學位論文,台北,2015。
    [27] 甯榮椿,「使用感應耦合店將反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究」,國立清華大學材料科學與工程學系碩士學位論文,新竹,2010。
    [28] T. Mattila and R. M. Nieminen, "Point-defect complexes and broadband luminescence in GaN and AlN," Physical Review B, vol. 55, pp. 9571-9576, 1997.
    [29] 林晏聖,「以側鍍方法提升四價摻鉻晶體光纖螢光強度之研究」,國立中山大 學光電工程研究所碩士論文,高雄,2004。

    QR CODE