簡易檢索 / 詳目顯示

研究生: 郭柏陞
Po-Sheng Kuo
論文名稱: 拋光墊溝槽微粒分佈觀測應用於玻璃晶圓化學機械平坦化研究
Observation of Abrasive Distribution in Pad Groove for Application in Glass Wafer Chemical Mechanical Planarization Process
指導教授: 陳炤彰
Chao-Chang Chen
莊程媐
Chen-Hsi Chuang
口試委員: 潘文玨
Wen-Jue Pan
劉顯光
Hsien-Kuang Liu
田維欣
Wei-Hsin Tien
莊程媐
Chen-Hsi Chuang
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 145
中文關鍵詞: 化學機械平坦化拋光墊溝槽粒子影像測速聚二甲基矽氧烷
外文關鍵詞: Chemical Mechanical Planarization, Pad Groove, Particle Image Velocimetry, Polydimethylsiloxane, PDMS
相關次數: 點閱:465下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為設計研發依商用拋光墊溝槽及其經過磨耗後之尺寸PDMS材料翻模複製的透明溝槽,並與玻璃黏合為一體之觀測模型,經過相似性轉換計算後利用粒子影像測速法(Particle Image Velocimetry, PIV)觀測螢光微粒在透明溝槽模型中的運動狀況,最後進行Glass-CMP驗證分析結果。本研究期望能解決在CMP製程中,因為晶圓與拋光墊之間視野狹小且材料不透明材質,導致若想在製程中瞭解拋光液中的磨粒在不同製程參數下對製程效益的影響非常困難之難題。本研究可分為三部分:先以微銑床在壓克力上銑削寬度520 μm,高度分別為400 μm、260 μm及120 μm之尺寸,再以PDMS翻模複製並打氧電漿使其與玻璃黏合完成透明溝槽模型製備,分別對透明溝槽模型進行尺寸量測與拋光墊及玻璃晶圓之折合模數、硬度、接觸角量測。第二部分先以相似性轉換計算注入流量再以PIV法觀測螢光微粒在不同溝槽深度及不同轉速參數下運動情形,分析結果注入速度與溝深影響對微粒速度及渦度有正相關,並能夠觀測到十字溝槽中微粒從進注口流入,經過轉角處加速的情形。最後進行Glass-CMP驗證實驗中得到晶圓之材料移除率與PIV觀測微粒運動結果之最大速度、渦度場呈現0.96與0.93極高度相關。


    This study aims to develop a PDMS transparent groove model based on the commercial polishing pad groove and the changes of its depth, which is bonded to glass. After calculating the parameter based on the similarity transformation, particle image velocimetry (PIV) is used to observe the movement of the particles in the transparent groove model. Finally, the Glass-CMP is conducted to verify the results of the analysis. Due to the small gap between the wafer and the polishing pad as well as the opacity of the polishing pad, it is difficult to observe how the abrasives in the slurry affect the efficiency of the process under different CMP parameters. The study is conducted in three phases. Firstly, acrylic sheets are milled by a micro-milling machine into the width of 520 μm and the height of 400 μm, 260 μm, and 120 μm, respectively. PDMS is used to manufacture the transparent groove model, and oxygen plasma is then used to bond the model to glass. The dimensions of the transparent groove model are measured, as well as the reduce modulus, hardness, and contact angle of polishing pad and glass wafer. Secondly, the quantity of the fluorescent agent injected is calculated based on the similarity transformation, and the movement of the fluorescent particles in pad grooves with different depths and under different rotation parameters is observed by PIV. The results show that injection velocity and groove depth are highly correlated with particle velocity and vorticity, and that in the cross grooves, the flow of the particles is accelerated at the corners. Finally, the Glass-CMP verification experiment demonstrates that the material removal rate is positively correlated with the velocity magnitude and vorticity field of the particle movement observed by PIV have 0.96 and 0.93 highly correlated.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XIII 符號表 XV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 論文架構 6 第二章 文獻回顧 8 2.1 流場可視化技術 8 2.2 不同拋光墊溝槽對拋光液流動影響 16 2.3 玻璃化學機械平坦化製程 19 2.4 文獻回顧總結 23 第三章 拋光墊溝槽對於拋光液分佈影響介紹 24 3.1 相似性轉換法(Similarity Transformation) 24 3.2 拋光墊溝槽型態介紹 26 3.3 實驗設備與規劃 29 3.3.1 PDMS介紹與製備相關耗材及設備 29 3.3.2 透明溝槽模型製作規劃 32 3.4 透明溝槽模型製備(實驗A) 33 3.4.1 PDMS微流道製作方法 33 3.4.2 氧電漿黏合 40 3.4.3 透明溝槽模型量測 42 3.5 實驗A結果與討論 55 3.5.1 透明溝槽模型製備結果討論 55 3.5.2 觀測模型與IC1000拋光墊性質比對總表 56 第四章 溝槽流場可視化 59 4.1 PIV觀測設備 59 4.2 PIV觀測及溝槽微粒運動分析(實驗B) 63 4.2.1 注入參數訂定及計算方法 63 4.2.2 實驗B實驗規劃 67 4.2.3 PIV分析方法設定 68 4.2.4 PIV分析結果與討論 72 第五章 CMP驗證實驗 87 5.1 實驗設備與規劃 87 5.1.1 化學機械平坦化製程設備 87 5.1.2 CMP實驗耗材 88 5.1.3 實驗C實驗規劃 94 5.2 玻璃化學機械平坦化實驗(實驗C) 95 5.3 綜合討論 101 第六章 結論與建議 104 6.1 結論 104 6.2 建議 105 參考文獻 106 附錄A 實驗量測設備 110 附錄B拋光墊類型介紹 114 附錄C 玻璃晶圓表面粗糙度形貌 117 附錄D PIV Lab分析微粒速度結果 121 附錄E 直接複製拋光墊微結構測試 124 作者簡介 127

    [1] B. B. Bakir, C. Sciancalepore, A. Descos, H. Duprez, D. Bordel, L. Sanchez, et al., "Heterogeneously integrated III-V on silicon lasers," ECS Transactions, vol. 64, p. 211, 2014.
    [2] M. Quirk and J. Serda, Semiconductor manufacturing technology vol. 1: Prentice Hall Upper Saddle River, NJ, 2001.
    [3] T. K. Doy, K. Seshimo, K. Suzuki, A. Philipossian, and M. Kinoshita, "Impact of novel pad groove designs on removal rate and uniformity of dielectric and copper CMP," Journal of the Electrochemical Society, vol. 151, p. G196, 2004.
    [4] A. J. Smits, Flow visualization: techniques and examples: World Scientific, 2012.
    [5] 林昱銘, "電致動力輔助化學機械平坦化加工之雙向交錯式電極開發應用於矽導微孔晶圓研究," 碩士, 機械工程系, 國立臺灣科技大學, 2017.
    [6] S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, "Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode," Applied Optics, vol. 25, pp. 1417-1419, 1986.
    [7] M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans, Particle image velocimetry: a practical guide: Springer, 2018.
    [8] J. W. Gregory, H. Sakaue, T. Liu, and J. P. Sullivan, "Fast pressure-sensitive paint for flow and acoustic diagnostics," Annual Review of Fluid Mechanics, vol. 46, pp. 303-330, 2014.
    [9] J. Coppeta, C. Rogers, A. Philipossian, and F. Kaufman, "Characterizing slurry flow during CMP using laser induced fluorescence," in Second International Chemical Mechanical Polish Planarization for ULSI Multilevel Interconnection Conference, Santa Clara, CA, 1997.
    [10] 陳逸翔, "以流場可視化方法探討化學機械拋光製程中 拋光液流動行為與濃度分佈," 碩士, 機械工程系, 國立臺灣科技大學, 2018.
    [11] 王子軒, "探討化學機械拋光製程中機台參數對拋光液濃度分佈之影響," 碩士, 機械工程系, 國立臺灣科技大學, 2019.
    [12] P. Khajornrungruang, K. Kimura, R. Yui, N. Wada, and K. Suzuki, "Slurry Supplying Method for Large Quartz Glass Substrate Polishing," Japanese Journal of Applied Physics, vol. 50, p. 05EC03, 2011.
    [13] T. Yamazaki, T. K. Doi, M. Uneda, S. Kurokawa, O. Ohnishi, K. Seshimo, et al., "Effect of groove pattern of chemical mechanical polishing pad on slurry flow behavior," Japanese Journal of Applied Physics, vol. 51, p. 05EF03, 2012.
    [14] Y. Li, J. Wang, Q. Xu, W. Yang, and Y. Guo, "Effects of velocity and pressure distributions on material removal rate in polishing process," in 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, 2009, p. 72820G.
    [15] N. Belkhir, T. Aliouane, and D. Bouzid, "Correlation between contact surface and friction during the optical glass polishing," Applied Surface Science, vol. 288, pp. 208-214, 2014.
    [16] 郭尚儒, "電致動力輔助化學機械平坦化製程應用於玻璃穿孔晶圓平坦化研究," 碩士, 機械工程系, 國立臺灣科技大學, 2015.
    [17] Y. Nakayama, Introduction to fluid mechanics: Butterworth-Heinemann, 2018.
    [18] F. Durst, Fluid mechanics: an introduction to the theory of fluid flows: Springer Science & Business Media, 2008.
    [19] 傅彥綺, "拋光墊線上量測系統於修整性能分析與銅化學機械拋光之相關性研究," 碩士, 機械工程系, 國立臺灣科技大學, 2016.
    [20] 廖偉程, "動態量測拋光墊系統於修整性能與銅膜晶圓化學機械平坦化之相關性研究," 碩士, 機械工程系, 國立臺灣科技大學, 2019.
    [21] S. D. Minteer, Microfluidic techniques: reviews and protocols vol. 321: Springer Science & Business Media, 2006.
    [22] A. Mata, A. J. Fleischman, and S. Roy, "Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems," Biomedical microdevices, vol. 7, pp. 281-293, 2005.
    [23] D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)," Analytical chemistry, vol. 70, pp. 4974-4984, 1998.
    [24] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, et al., "Fabrication of microfluidic systems in poly (dimethylsiloxane)," ELECTROPHORESIS: An International Journal, vol. 21, pp. 27-40, 2000.
    [25] C. W. Beh, W. Zhou, and T.-H. Wang, "PDMS–glass bonding using grafted polymeric adhesive–alternative process flow for compatibility with patterned biological molecules," Lab on a Chip, vol. 12, pp. 4120-4127, 2012.
    [26] S. Prion and K. A. Haerling, "Making sense of methods and measurement: Pearson product-moment correlation coefficient," Clinical simulation in nursing, vol. 11, pp. 587-588, 2014.
    [27] 蔡明城, "開發線上監控量測方法與系統應用於拋光墊性能水準分析之研究," 碩士, 機械工程系, 國立臺灣科技大學, 2015.
    [28] 蕭百成, "銅化學機械平坦化之軟拋光墊性能指標分析研究," 碩士, 機械工程系, 國立臺灣科技大學, 2018.

    QR CODE