簡易檢索 / 詳目顯示

研究生: 吳昱承
YU-CHENG WU
論文名稱: 奈米碳材料/聚二甲基矽氧烷熱電複合材料製備及其應用
Preparation and Application of Carbon Nanomaterials/Polydimethylsiloxane Thermoelectric Composite
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 游進陽
Chin-Yang Yu
鄭智嘉
Chih-Chia Cheng
邱昱誠
Yu-Cheng Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 110
中文關鍵詞: 熱電材料石墨烯奈米碳管聚二甲基矽氧烷酸化改質
外文關鍵詞: thermoelectric materials, carbon nanotubes, graphene, polydimethylsiloxane, acid modification
相關次數: 點閱:296下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今隨著人們對各種電子產品的興趣日益增長,可穿戴技術成為熱門話題。但可穿戴設備通常需要電池提供運行電源。然而相較於不斷縮小尺寸的電子產品而言,電池仍然體積龐大且重量沉重。此外,電池的使用壽命有限,需要頻繁充電,限制了可穿戴設備的功能。因此能量收集技術成為提升可穿戴設備功能的主要替代方案,人體以運動和熱能的形式釋放出大量能量。因此利用熱電裝置進行身體熱能收集的技術一直是研究的核心。
    本研究是利用奈米碳管酸化改質方式,使原本在水或有機溶劑中不容易分散的奈米碳管能夠與溶液中其他分子之間的相互作用力,從而改善其分散性和溶解性,並藉由奈米碳管-石墨烯混合來增強複合材料電網絡,降低接觸電阻,同時也可以防止奈米碳管團聚和石墨烯堆疊,再運用奈米碳管和石墨烯優異的電性能和高長徑比作為導電填料,添加在聚二甲基矽氧烷和氯化鈉中,做成海綿結構圓柱形狀的熱電複合材料。為了實現獨立式熱電模組,我們使用自製的海綿結構圓柱形狀的熱電複合材料,通過採用連續模組設計,將圓柱串聯成熱電模組。並將圓柱的頂部和底部貼上銅片連接,充當電極,發現在溫差為 20°C 時能產生 24 mV 的電壓,最後我們再對圓柱的大小及排列方式進行比較,最後得知在直徑為 20 mm ,高 15 mm 的海綿圓柱,且兩柱距離為 1.5 cm 時,熱電效果最好能產出 300 mV 的電壓,同時還可以證明串聯熱電模組,可以有效地增加電壓。


    With the growing interest in various electronic products nowadays,
    wearable technology has become a hot topic. However, wearable devices
    often require batteries to provide operational power. In comparison to the
    continuously shrinking size of electronic products, batteries still remain
    bulky and heavy. Additionally, batteries have limited lifespans and require
    frequent recharging, which restricts the functionality of wearable devices.
    Therefore, energy harvesting technology has emerged as a primary
    alternative to enhance the capabilities of wearable devices. The human
    body releases a significant amount of energy in the form of motion and
    heat. Thus, utilizing thermoelectric devices to harness body heat energy
    has been a central focus of research.
    This study employs a method of acid modification of nanotubes to
    enhance the dispersibility and solubility of initially poorly dispersed
    nanotubes in water or organic solvents. This improvement is achieved by
    enhancing the interaction forces between the nanotubes and other
    molecules in the solution. Furthermore, a nanotube-graphene hybrid is
    utilized to enhance the electrical network of composite materials, thereby
    reducing contact resistance and preventing nanotube aggregation and
    graphene stacking. Leveraging the excellent electrical properties and high
    aspect ratio of nanotubes and graphene, they are used as conductive fillers
    added to polydimethylsiloxane and sodium chloride to create a sponge-like
    cylindrical thermoelectric composite structure.
    To realize an autonomous thermoelectric module, a self-made sponge-like
    cylindrical thermoelectric composite material is employed. By adopting a
    series module design, the cylinders are interconnected to form a
    thermoelectric module. Copper plates are affixed to the top and bottom of
    the cylinders to serve as electrodes. It was observed that a voltage of 24
    mV could be generated with a temperature difference of 20°C. Finally, a
    comparison of cylinder size and arrangement was conducted, revealing that
    the best thermoelectric performance was achieved with sponge cylinders
    of 20 mm diameter and 15 mm height, placed 1.5 cm apart. Under these
    conditions, the thermoelectric effect yielded a voltage of 300 mV,
    demonstrating that series-connected thermoelectric modules can
    effectively amplify voltage.

    目錄 摘要.............I Abstract........III 目錄.............V 圖目錄...........X 表目錄...........XIV 第一章 緒論......1 1.1前言.........1 1.2研究目的..... 2 第二章 文獻回顧..4 2.1熱電的發展....4 2.2熱電效應......5 2.2.1席貝克效應(Seebeck effect)...5 2.2.2帕爾帖效應(Peltier effect)...7 2.2.3湯姆森效應(Thomson effect)....9 2.3熱電應用.....10 2.3.1工廠廢熱發電.....10 2.3.2汽機車廢熱發電.....11 2.3.3熱電晶片.....13 2.3.4穿戴式設備.....14 2.4熱電性能.....16 2.4.1熱電優值.....16 2.4.2 N-P型摻雜.....18 2.5熱電材料的選擇.....21 2.5.1奈米碳管(Carbon Nanotube, CNT)的結構性質.....22 2.5.2奈米碳管的製備方法.....23 2.5.3 奈米碳管運用在穿戴式設備.....26 2.5.4石墨烯(Graphene)的結構性質.....28 2.5.5石墨烯的製備方法.....31 2.5.6石墨烯運用在熱電設備.....32 2.6奈米碳管酸化改質.....33 2.7多孔海綿結構.....35 2.8熱電材料的發展方向.....36 第三章 實驗方法.....39 3.1實驗流程圖.....39 3.2實驗藥品與儀器.....40 3.2.1實驗藥品.....40 3.2.2實驗設備及儀器.....42 3.3實驗方法和原理.....43 3.3.1奈米碳管酸化改質.....43 3.3.2聚二甲基矽氧烷/改質奈米碳管複合熱電圓柱.....44 3.3.3聚二甲基矽氧烷/改質奈米碳管/石墨烯複合熱電圓柱.....45 3.3.4聚二甲基矽氧烷/改質奈米碳管/石墨烯/氯化鈉複合熱電圓柱.....46 3.3.5浸泡N型溶液和P型溶液.....47 3.4鑑定及儀器分析.....47 第四章 結果與討論.....50 4.1改質前後奈米碳管結構差異.....50 4.1.1奈米碳管紅外線光譜分析.....50 4.1.2改質奈米碳管表面拉曼光譜分析.....51 4.1.3奈米碳管表面型態觀察.....54 4.1.4以AFM 觀察奈米碳管表面形態.....56 4.1.5奈米碳管分散性分析.....57 4.2聚二甲基矽氧烷/改質奈米碳管複合熱電圓柱.....59 4.2.1不同重量比的聚二甲基矽氧烷/改質奈米碳管圓柱電阻.....60 4.2.2聚二甲基矽氧烷/改質奈米碳管表面形態.....61 4.2.3不同重量比的聚二甲基矽氧烷/改質奈米碳管的熱電性能.....62 4.3聚二甲基矽氧烷/改質奈米碳管/石墨烯複合熱電圓柱.....65 4.3.1不同重量比的聚二甲基矽氧烷/改質奈米碳管/石墨烯圓柱電阻.....66 4.3.2聚二甲基矽氧烷/改質奈米碳管/石墨烯表面形態.....68 4.3.3不同重量比的聚二甲基矽氧烷/改質奈米碳管/石墨烯的熱電性能.....69 4.4聚二甲基矽氧烷/改質奈米碳管/石墨烯/氯化鈉複合熱電海綿圓柱.....70 4.4.1不同重量比聚二甲基矽氧烷/改質奈米碳管/石墨烯/氯化鈉複合熱電海綿圓柱電阻.....71 4.4.2聚二甲基矽氧烷/改質奈米碳管/石墨烯/氯化鈉複合熱電海綿圓柱表面形態.....72 4.4.3不同重量比聚二甲基矽氧烷/改質奈米碳管/石墨烯/氯化鈉海綿機械特性.....73 4.4.4不同重量比聚二甲基矽氧烷/改質奈米碳管/石墨烯/氯化鈉海綿圓柱的熱電性能.....74 4.5比較不同實心圓柱和海綿圓柱的材料特性.....76 4.5.1實心圓柱和海綿圓柱電阻比較.....76 4.5.2實心圓柱和海綿圓柱電壓比較.....76 4.6熱電模組結構設計.....78 4.7不同N-P型溶液濃度對摻雜在海綿熱電圓柱的影響.....80 4.8熱電圓柱狀複合材料應用.....83 4.9比較不同熱電材料的性能.....86 第五章 結論.....88 第六章 參考文獻.....89

    [1] C. Y. Chu, M. C. Pan, Effective thermal emission on TFT–LCD TV panels for improving image quality. Advances in Engineering Software 2010, 41, 130-140.
    [2] Jakovenko, J. Werkhoven, R. Formánek, J. Kunen, J. Bolt, P. Kulha, Thermal simulation and validation of 8W LED Lamp, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems 2011, 12, 1-4 .
    [3] J. A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing 2005, 4, 18-27.
    [4] W. Zeng, X. M. Tao, S. Lin, C. Lee, Defect-engineered reduced graphene oxide sheets with high electric conductivity and controlled thermal conductivity for soft and flexible wearable thermoelectric generators. Nano Energy 2018, 54, 163-174.
    [5] Y. Wang, J. Yang, L. Wang, K. Du, Q. Yin, Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Applied Materials Interfaces 2017, 9, 20124-20131.
    [6] K. Zeb, S. M. Ali, B. Khan, C. A. Mehmood, N. Tareen, W. Din, U. Farid, A. Haider, A survey on waste heat recovery: Electric power generation and potential prospects within pakistan, Renewable and Sustainable Energy Reviews 2017, 75, 1142-1155.
    [7] N. T. Hung, A. Nugraha, R. Saito, Thermoelectric properties of carbon nanotubes, Energies 2019, 12, 45-61.
    [8] W. Thomson, I. account of researches in thermo-lectricity, Proceedings of the Royal Society of London 1856, 23, 49-58.
    [9] 朱旭山,熱電材料與元件之原理與應用, 電子與材料雜誌 2004,
    22, 78-89
    [10] 劉君愷, 熱電元件系統構裝, 工業材料雜誌2016, 351, 110-118.
    [11] 黃昭仁,熱電發電之電路設計原理與技術簡介, 工業材料雜誌
    2016, 351, 91-101.
    [12] 劉君愷、陳堯舜、戴明吉、韓偉國、廖莉菱, 車用熱電廢熱回
    收技術, 工業材料雜誌2015, 340, 121-126.
    [13] A. D. LaLonde, Y. Pei, H. Wang, G. J. Snyder, Lead telluride alloy thermoelectrics, Materials Today 2011, 14, 526-536.
    [14] R. Riemer, R. Shapiro, Biomechanical energy harvesting from human motion:theory state of the art, design guidelines,and future directions. Journal of NeuroEngineering and Rehabilitation 2011, 8,8-22.
    [15] O. H. Maran, N. C. Henao, A review of the development and applications of thermoelectric microgenerators for energy harvesting, Renewable and Sustainable Energy Reviews 2018, 91, 376-393.
    [16] B. Wu, Y. Guo, C. Hou, Q. Zhang, Y. Li, From carbon nanotubes to highly adaptive and flexible high-performance thermoelectric generators. Nano Energy 2021, 89, 106487.
    [17] M. Nastasi, J. W. Mayer, Ion implantation and synthesis of materials , Springer-Verlag 2006, 5, 63-76.
    [18] G. Chen, M. S. Dresselhaus, G. Dresselhaus, T. Eaillat, Recent developments in thermoelectric materials, International Materials Reviews 2003, 48, 45-66.
    [19] Y. I. Zhang, L. Zhang, C. Zhou, Review of chemical vapor deposition of graphene and related applications, Accounts of Chemical Research 2013, 46, 2329-2339.
    [20] C. D.Weber, M. C. Bradley, Lonergan solution phase n-doping of C60 and PCBM using tetrabutylammonium fluoride, Journal of Materials Chemistry 2014, 2, 303-307.
    [21] J. R. Sootsman, D. Y. Chung, M. G.Kanatzidis, New and old concepts in thermoelectric materials, Angewandte Chemie International Edition 2009, 48, 8616-8639.
    [22] A. J. Minnich, M. S. Dresselhaus, Z. Ren, G. Chem, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy Environ Science 2009, 2, 79-466.
    [23] S. LeBlanc, S. K. Yee, M. L. Scullin, C. Dames, K. E. Goodson, Material and manufacturing cost considerationsfor thermoelectric, Renew Sustain Energy Reviews 2014, 32, 27-313.
    [24] S. Iijima, Helical microtubules of graphitic carbon, Nature 1991, 354, 56-58.
    [25] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 1993, 363, 603-605.
    [26] K. Sarangdevot, B. Sonigara, The wondrous world of carbon nanotubes: Structure synthesis properties and applications , ournal of Chemical and Pharmaceutical Research 2015, 7, 916-933.
    [27] T. Ebbesen and P. Ajayan, Large-scale synthesis of carbon nanotubes, Nature 1992, 358, 220-222.
    [28] K. T. Lau, M. Lu, D. Hui, Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures, Engineering Composites Part B 2006, 37, 437-448.
    [29] Z. W. Pan, S. Xie, B. H. Chang, L. F. Sun, W. Y. Wang, Direct growth of aligned open cabon nanotubes by chemical vapor deposition, Chemical Physics Letters 1999, 299, 97-102.
    [30] Yudasaka, Mechanism of the effect of NiCo, Ni, and Co catalysts on the yield of single-wall carbon nanotubes forced by pulsed Nd: YAG laser ablation, Journal of Physical Chemistry 1999, 103, 11-17.
    [31] Z. Ren, Z. P. Huang, Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 1998, 282, 1105-1107.
    [32] H. Zhu, C. Xu, D. Wu, B. Wei, R. Vajtai, P. Ajayan, Direct synthesis of long single-walled carbon nanotube strands, Science 2002, 296, 884-886.
    [33] J. Choi, Y. Jung, C. Dun, K. T. Gordon, M. P. Haas, High-performance wearable thermoelectric generator based on a highly aligned carbon nanotube sheet, ACS Applied Energy Materials 2019, 3, 1199-1206.
    [34] S. Arepalli, P. Nikolaev, W. Holmes, B. S. Files, Production and measurements of individual single-wall nanotubes and small ropes of carbon, Applied physics letters 2001, 78, 1610-1612.
    [35] K. S. Novoselov and D. Jiang, Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences 2005, 102, 10451-10453.
    [36] T. H. Nguyen, Z. Zhang, A. Mustapha, H. Li, and M. Lin, Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy, Journal of Agricultural and Food Chemistry 2014, 62, 10445-10451.
    [37] T. Shanghua, D. Hui, Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures, Carbon 2002, 40, 15-97.
    [38] Y. He, G. Lu, H. Shen, Y. Cheng, Q. Gong, Strongly enhanced Raman scattering of graphene by a single gold nanorod, Applied Physics Letters 2015, 107, 53-104.
    [39] A. K. Geim and K. S. Novoselov, The rise of graphene Nanoscience and technology: a collection of reviews from nature journals, World Scientifi 2010, 20, 11-19.
    [40] S. Chen, B. Cheng, and C. Ding, Synthesis and characterization of poly (vinyl pyrrolidone)/reduced graphene oxide nanocomposite, Journal of Macromolecular Science Part B 2015, 54, 481-491.
    [41] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, The chemistry of graphene oxide, Chemical Society Reviews 2010, 39, 28-240.
    [42] H. Yu, B. Zhang, C. Bulin, R. Li, and R. Xing, High-efficient synthesis of graphene oxide based on improved hummers method, Scientific Reports 2016, 6, 36-143.
    [43] L. J. Cote, J. Kim, V. C. Tung, J. Luo, F. Kim, and J. Huang, Graphene oxide as surfactant sheets, Pure and Applied Chemistry 2010, 83, 95-110.
    [44] Yan-hui Li, Shuguang Wang, Zhaokun Luan, Jun Ding, Cailu Xu, Adsorptionofcadmium from aqueous solution by surface oxidized carbon nanotubes, Carbon 2003, 41, 1057-1062.
    [45] Hu Hui, Bin Zhao, E. Mikhail, C. Robert, Nitricacid purification of single-walled carbon nanotubes, Journal of Physical Chemistry B 2003, 107, 13838-13842.
    [46] X. H. Chen, C. S. Chen, Q. Chen, F. Q. Cheng, G. Zhang, Z. Z. Chen, Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD, Materials Letters 2002, 57, 734-738.
    [47] J. Wei, Z. Miao, Y. Wang, Y. Zhou, D. Gao, H. Zhang, Boosting power factor of thermoelectric cementitious composites by a unique CNT pretreatment process with low carbon content. Energy and Buildings 2022, 254, 111617.
    [48] Li Zhang, Flexible thermoelectric materials and devices: From materials to applications, Materials Today 2021, 46, 62-108.
    [49] Y. Zhang, Z. Shi, Z. Gu, S. Iijima, Structure modification of single-wall carbon nanotubes, Carbon 2000, 38, 2055-2059.
    [50] W. Bauhofer, J. Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology 2009, 69, 486-1498.
    [51] X. Y. Yang, L. H. Chen, Y. Li, J. C. Rooke, C. Sanchez, Hierarchically porous materials: synthesis strategies and structure design, Chemical Society Reviews 2017, 46, 481-558.
    [52] L. Tan, B. Tan, Hypercrosslinked porous polymer materials: design, synthesis, and applications, Chemical Society Reviews 2017, 46, 3322-3356.
    [53] W. Jiang, Y. Zhu, G. Zhu, Z. Zhang, X. Chen, Three-dimensional photocatalysts with a network structure, Journal of Materials Chemistry A 2017, 5, 5661-5679.
    [54] E. Yilgör, I. Yilgör, Silicone containing copolymers:Synthesis, properties and applications. Progress in Polymer Science 2014, 39, 1165-1195.
    [55] J. G. Simmons , Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film, Journal of Applied Physics 1963, 34, 1793-1803.
    [56] W. Bauhofer, J. Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Science and Technology 2009, 69, 1486-1498.
    [57] J. Choi, Y. Jung, S. J. Yang, J. Y. Oh, K. Jo, Flexible and robust thermoelectric generators based on all-carbon nanotube yarn without metal electrodes. ACS Nano 2017, 11, 7608-7614.
    [58] J. Choi, Y. Jung, C. Dun, K. T. Park, M. P. Gordon, K. Haas, High-performance, wearable thermoelectric generator based on a highly aligned carbon nanotube sheet. ACS Applied Energy Materials 2019, 3, 1199-1206.
    [59] D. Zhang, Y. Mao, P. Bai, Q. Li, He, W. Cui, Multifunctional superelastic graphene-based thermoelectric sponges for wearable and thermal management devices. Nano Letters 2022, 22, 3417-3424.
    [60] Y. Wang, M. Hong, W. D. Liu, X. L. Shi, S. D. Xu, Q. Sun, BiO5Sb1 Te3/PEDOT:PSS-based flexible thermoelectric film and device. Chemical Engineering Journal 2020, 397, 125360.

    無法下載圖示 全文公開日期 2033/08/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE