簡易檢索 / 詳目顯示

研究生: 強維文
Wei-wen Chiang
論文名稱: 錫銅奈米碳管複材預鋰化負極的鋰離子混合式電容器
Lithium ion hybrid capacitors with a negative electrode of prelithiated tin/copper/CNT composite
指導教授: 蔡大翔
Dah-shyang Tsai
口試委員: 李奎毅
Kuei-yi Lee
陳瑞山
Ruei-san Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 66
中文關鍵詞: 鋰離子混合式電容器奈米碳管氧化作用無電電鍍能量密度鋰化程序
外文關鍵詞: lithium ion hybrid capacitor, carbon nanotube, oxidation, electroless plating, energy density, lithiation
相關次數: 點閱:355下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究製備鋰離子混合式電容器,結合高比表面積的活性碳做為正極材料,搭配奈米碳管/錫/銅複合材料,及1M LiPF6/EC:DMC= 1:1(w/w)有機電解液,得到高能量密度的電容器。電極改良重點在於負極,多孔負極製程採用一維導電的奈米碳管先進行表面氧化,再以無電電鍍的方式成功將錫與銅鍍於奈米碳管上形成碳管/錫/銅複合材料(CNT/Sn/Cu)。
    奈米碳管表面若未做氧化處理,無電電鍍錫難以附著,若高度氧化,則將損傷奈米碳管導電能力甚至結構,利用XPS做量測,建立表面氧化處理的指標,根據C1s圖譜分峰處理後的結果,可以觀察到π-π*電子躍遷訊號,說明經過表面氧化及無電電鍍後的奈米碳管仍具有一定的導電能力。輕微氧化過的奈米碳管,電鍍高比例均勻分布的錫/銅金屬,碳管:錫:銅重量比約為36:50:14。二次電子影像顯示錫銅顆粒狀包覆碳管,但也有局部區域形成錫銅金屬片狀。碳管/錫/銅電極預鋰化時消耗大量的電量,第一圈鋰化電量1045 mAh g-1,第二圈電量500 mAh g-1,第三圈電量435 mAh g-1。顯示並非所有鋰合金參與充放電,只有部分鋰合金釋放出鋰離子。
    充放電結果顯示: CNT/Sn/Cu : AC=1 : 1混合式電容器的能量密度很高,當電流密度0.3A g-1時,電位窗口為 3.5 V及3.8 V的電容值分別高達42.7 F g-1及58.8 F g-1。由Ragone plot圖可知,0.3A g-1在電位窗口為3.5 V時,能量密度為61.6 Wh kg-1,功率密度為0.45 kW kg-1,而在電位窗口為3.8 V能量密度高達93.6 Wh kg-1,此時的功率密度為0.45 kW kg-1,能量密度是普通電雙層電容器的十倍或二十倍。鋰化去鋰化反應速率較慢,是充放電的速率決定步驟,因此,CNT/Sn/Cu負極的鋰離子混合式電容器適用於低電流密度充放電,此外,負極材料與鋰離子結合造成體積嚴重膨脹也將是充放壽命的隱憂。


    We prepare a lithium hybrid ion capacitor, consisting of a negative electrode of CNT/Sn/Cu composite, activated carbon positive electrode, LiPF6/EC:DMC electrolyte, and measure its capacity. The research efforts are focused on modification of the negative electrode, in which one-dimensional CNT has been oxidized and electroless plating tin and copper.
    The CNT surface is essentially hydrophobic, coating of tin cannot be done homogeneously over the entire CNT assembly without oxidizing the CNT surface. On the other hand, if the CNT surface is oxidized excessively, the electrical conductivity of CNT shall be degraded. Guided through the C1s spectrum, we oxidize CNT properly such that tin coating can be done properly while the π-π* transition of C1s remains observable. And the weight distribution of carbon:tin:copper= 36:50:14 on the CNT/Sn/Cu composite. SEM images indicate the metallic tin and copper wrap the nanotube up and also suspend among the nanotube crosses. The so-prepared electrode exhibits huge capacity, 1045 mAh g-1 in the first discharge cycle, 500 mAh g-1 in the second cycle, and 435 mAh g-1 in the third cycle. The high irreversible capacity indicates that not all lithium tin alloy involves in the charge process.
    The energy and power densities of the lithium hybrid ion capacitor are measured with a mass ratio of 1:1 for positive and negative electrodes. At current density 0.3 A g-1, the capacitor demonstrates 61.6 Wh kg-1 and 0.45 kW kg-1 in the 3.5 V window, the energy density increases to 93.6 Wh kg-1 and the power remains 0.45 kW kg-1 in the 3.8 V window. Lithiation and delithiation is an intrinsically slow process, determining the charge/discharge rate of capacitor. Hence the capacitor equipped with CNT/Sn/Cu negative is righteously operated at low current densities. But its performance degradation is fast, because irreversible capacity and large stresses associated with cycling.

    摘要 ABSTRACT 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究動機 第二章 文獻回顧與理論基礎 2.1 電化學電容器(Electrochemical capacitors, EC) 2.1.1 電雙層電容器(Electrochemical Double-layer Capacitors, EDLC) 2.1.2 擬電容器 (Pseudocapacitor) 2.1.3 鋰離子混合式電容器 (Lithium-ion hybrid capacitors, LIHC) 第三章 實驗方法與步驟 3.1 實驗藥品耗材與儀器設備 3.1.1正、負極材料製備 3.1.2電性量測 3.1.3 電化學測試儀器及設備 3.1.4 材料鑑定及分析之儀器 3.2實驗流程圖 3.2.1 正極漿料製備 3.2.2 負極材料合成 3.2.3 負極漿料製備 3.2.4 鋰離子混和式電容器之電極製備 3.3 實驗方法 3.3.1鋰離子混合式電容器正極漿料製備 3.3.2 鋰離子混合式電容器負極材料合成 3.3.3 鋰離子混合式電容器負極漿料製備 3.3.4 電流收集器清洗及準備工作 3.4 電極材料鑑定與分析 3.4.1 場發射掃瞄式電子顯微鏡 3.4.2 X射線光電子能譜化學分析儀 3.5 電化學特性分析 3.5.1 循環伏安法 3.5.2 恆電流充、放電量測 第四章 結果與討論 4.1 電極材料性質測試 4.1.1 正極材料活性碳之循環伏安分析 4.1.2負極材料CNT/Sn/Cu之SEM圖及EDS結果分析 4.1.3 X射線光電子能譜儀 4.1.4 單電極充、放電行為 4.2 鋰離子混合式電容器性質測試 4.2.1恆電流充、放電分析 4.2.2 比電容分析 4.2.3 放電特性分析 4.2.4 正、負電極充、放電特性分析 第五章 結論

    [1] A. K. Shukla, A. Banerjee, M. K. Ravikumar, A. Jalajakshi, “Electrochemical capacitors: Technical challenges and prognosis for future markets”, Electrochimica Acta, vol. 84, pp. 165-173 (2012)
    [2] R. Kotz, M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochimica Acta, vol. 45, pp. 2483-2498 (2000)
    [3] M. Winter, R. J. Brodd, “What are batteries, fuel cells, and supercapacitors?”, Chemical Reviews, vol. 104, pp. 4245-4269 (2004)
    [4] A. Burke, “Ultracapacitors: why, how, and where is the technology”, Journal of Power Sources, vol. 91, pp. 37-50 (2000)
    [5] P. Sharma, T. S. Bhatti, “A review on electrochemical double-layer capacitors”, Energy Conversion and Management, vol. 51, pp. 2901-2912 (2010)
    [6] E. Frackowiak, F. Beguin, “Carbon materials for the electrochemical storae of energy in capacitors”, Carbon, vol. 39, pp. 937-950 (2001)
    [7] G. Wang, L. Zhang, J. Zhang, “A review of electrode materials for electrochemical supercapacitors”, Chemical Society Reviews, vol. 41, pp. 797-828 (2012)
    [8] J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous ruthium oxide as an electrode material for electrochemical capacitors”, Journal of The Electrochemical Society, vol. 142, pp. 2699-2703 (1995)
    [9] K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park, S. H. Chang, “Symmetric redox supercapacitor with conducting polyaniline electrodes”, Journal of Power Sources, vol. 103, pp. 305-309 (2002)
    [10] A. Clemente, S. Panero, E. Spila, B. Scrosati, “Solid-state, polymer-based, redox capacitors”, Solid State Ionics, vol. 85,pp. 273-277 (1996)
    [11] B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, pp. 613-620 (1999)
    [12] A. Burke, “R&D considerations for the performance and application of electrochemical capacitors”, Electrochimica Acta, vol. 53, pp. 1083-1091 (2007)
    [13] P. Simon, Y. Gogotsi, “Materials for electrochemical capacitors”, Nature materials, vol. 7, pp. 845-854 (2008)
    [14] D. Qu, H. Shi, “Studies of activated carbons used in double-layer capacitors”, Journal of Power Sources, vol. 74, pp. 99-107 (1998)
    [15] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, vol. 354, pp. 56-58 (1991)
    [16] Q. L. Chen, K. H. Xue, W. Shen, F. F. Tao, S. Y. Yin, W. Xu, “Fabrication and Electrochemical Properties of Carbon Nanotube Array Electrode for Supercapacitors”, Electrochimica Acta ,vol. 24, pp. 4157-4161 (2004)
    [17] C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, “High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes”, Applied Physics Letters , vol. 70, pp. 1480-1482 (1997)
    [18] K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, “Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes”, Advanced Funtional Materials, vol. 11, pp. 387-392 (2001)
    [19] A. R. Kamali, D. J. Fray, “Tin-based materials as advanced anode materials for lithium ion batteries: A review”, Reviews on Advanced materials science, vol.27, pp.14-24 (2011)
    [20] M. N. Obrovac, L. Christensen, “Structural changes in silicon anodes during lithium insertion/extraction”, Electrochemical and Solid-State Letters, vol.7, pp. A93-A96 (2004)
    [21] M. J. Lindsay, G. X. Wang, H. K. Liu, “Al-based anode materials for Li-ion batteries”, Journal of Power Sources, vol. 119-121, pp. 84-87 (2003)
    [22] C. K. Chan, X. F. Zhang, Y. Cui, “High capacity Li ion battery anodes using Ge nanowires”, Nano Letters, vol. 8, pp. 307-309 (2008)
    [23] R. A. Huggins, “Lithium alloy negative electrodes”, Journal of Power Sources, vol. 81-82, pp. 13-19 (1999)
    [24] L. Y. Beaulieu, S. D. Beattie, T. D. Hatchard, J. R. Dahn, “The electrochemical reaction of lithium with tin studied by In Situ AFM”, Journal of The Electrochemical Society, vol. 150, pp. A419-A424 (2003)
    [25] M. Dahbi, F. Ghamouss, T. V. Francois, D. Lemordant, M. Anouti, “Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage”, Journal of Power Sources, vol. 196, pp. 9743-9750 (2011)
    [26] Z. Chen, W. Q. Lu, J. Liu, K. Amine, “LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries”, Electrochimica Acta, vol. 51, pp. 3322-3326 (2006)
    [27] Q. M. Liu, D. Zhou, Y. Yuya, I. Ryoichi, O. Masazumi, “Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method”, Transactions of Nonferrous Metals Society of China, vol. 22, pp. 117-123 (2012)
    [28] C. Xu, G. Wu, Z. Liu, D. Wu, T. T. Meek, Q. Han, “Preparation of copper nanoparticles on carbon nanotubes by electroless plating method”, Materials Research Bulletin, vol. 39, pp. 1499-1505 (2004)
    [29] B. Zhao, B. L. Yadian, Z. J. Li, P. Liu, Y. F. Zhang, “Improvement on wettability between carbon nanotubes and Sn”, Surface Engineering, vol. 25, pp. 31-35 (2009)
    [30] S. Liu, Q. Li, Y. Chen, F. Zhang, “Carbon-coated copper–tin alloy anode material for lithium ion batteries”, Journal of Alloys and Compounds, vol. 478, pp. 694-698 (2009)
    [31] S. T. Myung, Y. Hitoshi, Y. K. Sun, “Electrochemical behavior and passivation of current collectors in lithium-ion batteries”, Journal of Materials Chemistry, vol. 21, pp. 9891-9911 (2011)
    [32] G. Moraitis, Z. Špitalsky, F. Ravani, A. Siokou, C. Galiotis, “Electrochemical oxidation of multi-wall carbon nanotubes”, Carbon, vol. 49, pp. 2702-2708 (2011)
    [33] K. A. Wepasnick, B. A. Smith, J. L. Bitter, D. H. Fairbrother, “Chemical and structural characterization of carbon nanotube surfaces”, Anal Bioanal Chem, vol. 396, pp. 1003-1014 (2010)
    [34] W. Martin, O. B. JuE rgen, “Electrochemical lithiation of tin and tin-based intermetallics and composites”, Electrochimica Acta, vol. 45 pp. 31-50 (1999)

    無法下載圖示 全文公開日期 2019/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE