簡易檢索 / 詳目顯示

研究生: 朱佑麟
Yu-Lin Chu
論文名稱: 單自由度變負載自動調整靜平衡機構之設計
Design of a Single-Degree-of-Freedom Statically Balanced Mechanism with Self-Regulator Under Variable Payload
指導教授: 郭進星
Chin-Hsing Kuo
口試委員: 劉孟昆
Meng-Kun Liu
詹魁元
Kuei-Yuan Chan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 64
中文關鍵詞: 靜平衡器變負載自動調整凸輪設計
外文關鍵詞: statically balancer, variable payload, self-regulator, cam design
相關次數: 點閱:219下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一種單自由度變負載自動調整靜平衡機構,該機構可在承受不同載重的情形下,自動調整機構內部配置,進而達到靜平衡狀態,即可靜止地停留在機構的任意運動位置上。此新型機構由一彈簧式靜平衡機構以及一彈簧接點自動調整機構所組成。靜平衡機構內部有一彈簧,彈簧之連接點位置可改變;當機構承受不同的載重時,彈簧連接點可受彈簧接點自動調整機構移動,以產生不同的彈簧拉伸量,使機構在運動範圍內之彈力與重力位能和皆保持定值。本研究首先將回顧定負載與變負載靜平衡機構之發展現況,然後介紹該靜平衡機構,以及與其搭配之彈簧接點自動調整機構的構造與原理。然後,透過一數值範例,建構一可承受0至2 kgw之載重的靜平衡機構。最後,完成該設計之電腦輔助設計模型以及測試。測試結果顯示,本設計之靜平衡機構在θ=0°~ 45°的範圍內可實現變負載靜平衡。


    The thesis presents a single-degree-of-freedom spring-based statically balanced mechanism with self-regulator under variable payload. Subject to different payload, the proposed mechanism can automatically adjust the connecting points of the spring without the help of electric motors or manual operation. The presenting design is composed of a statically balanced mechanism and a spring adjusting mechanism. The statically balanced mechanism uses cables to adjust the spring connection points for satisfying the statically balanced condition. The cables are driven by the spring adjusting mechanism. When different payload is applied onto this mechanism, the mechanism can drive the cables to move the spring connecting points to suitable places where the overall potential energy of the mechanism and the payload will remain constant within the workspace of the mechanism. A numerical example is provided to illustrate the design under a payload ranged from 0 to 2 kgw. A computer-aided design model of the design is provided, and a prototype is built up and tested to verify the design. The testing results show that the prototype can reach statically balanced condition under variable payload between θ=0°~ 45°.

    摘要 I Abstract II 目錄 III 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.2.1 定負載靜平衡機構 3 1.2.2 變負載靜平衡機構 9 1.3研究目的 13 1.4論文架構 13 第二章 變負載静平衡設計 15 2.1基本假設 15 2.2定負載靜平衡機構理論基礎 16 2.3變負載靜平衡機構理論初探 18 2.4單自由度變負載靜平衡機構設計 19 2.5 載重調整位置 24 2.6零自由長度彈簧之實現 26 2.7數值範例 27 2.8小結 29 第三章 變負載自動調整裝置設計 30 3.1基本假設與理論基礎 30 3.2變負載自動調整機構:設計一 31 3.3變負載自動調整機構:設計二 35 3.4數值範例 41 3.5小結 43 第四章 原型機實作與測試 44 4.1電腦輔助設計 44 4.2機構製作 50 4.3機構測試 52 4.3.1 變負載自動調整測試 53 4.3.2 變負載靜平衡測試 54 4.4小結 56 第五章 結論與未來展望 57 5.1結論 57 5.2未來展望 58 參考文獻 60

    [1] Kuo, C.-H., Lai, S.-J., 2016, “Design of a Novel Statically Balanced Mechanism for Laparoscope Holders with Decoupled Positioning and Orientating Manipulation,” ASME Journal of Mechanisms and Robotics, 8(1), p. 015001.
    [2] Agrawal, A., Agrawal, S. K., 2005, “Design of Gravity Balancing Leg Orthosis Using Non-Zero Free Length Springs,” Mechanism and Machine Theory, 40(6), pp. 693-709.
    [3] Fattah, A., Agrawal, S. K., Catlin, G., Hamnett, J., 2006, “Design of a Passive Gravity-Balanced Assistive Device for Sit-to-Stand Tasks,” ASME Journal of Mechanical Design, 128(5), pp. 1122-1129.
    [4] Herder, J. L., Vrijlandt, N., Antonides, T., Cloosterman, M., Mastenbroek, P. L., 2006, “Principle and Design of a Mobile Arm Support for People with Muscular Weakness,” Journal of Rehabilitation Research and Development, 43(5), pp. 591-604.
    [5] Van Dorsser, W. D., Barents, R., Wisse, B. M., Herder, J. L., 2007, “Gravity-Balanced Arm Support with Energy-Free Adjustment,” ASME Journal of Medical Devices, 1(2), pp. 151-158.
    [6] Lin, P. Y., Shieh, W. B., Chen, D. Z., 2013, “A Theoretical Study of Weight-Balanced Mechanisms for Design of Spring Assistive Mobile Arm Support (Mas),” Mechanism and Machine Theory, 61, pp. 156-167.
    [7] Tseng, T.-Y., Hsu, W.-C., Lin, L.-F., Kuo, C.-H., 2015, “Design and Experimental Evaluation of a Reconfigurable Gravity-Free Muscle Training Assistive Device for Lower-Limb Paralysis Patients,” ASME 2015 International Design Engineering Technical Conferences (IDETC 2015), Boston, MA, USA, 2-5 August, Paper No. DETC2015-46706.
    [8] Agrawal, S. K., Fattah, A., 2004, “Gravity-Balancing of Spatial Robotic Manipulators,” Mechanism and Machine Theory, 39(12), pp. 1331-1344.
    [9] Russo, A., Sinatra, R., Xi, F., 2005, “Static Balancing of Parallel Robots,” Mechanism and Machine Theory, 40(2), pp. 191-202.
    [10] Fattah, A., Agrawal, S. K., 2006, “Gravity-Balancing of Classes of Industrial Robots,” IEEE International Conference on Robotics and Automation, Orlando, Florida, USA, 15-19 May, pp. 2872-2877.
    [11] Lacasse, M.-A., Lachance, G., Boisclair, J., Ouellet, J., Gosselin, C., 2013, “On the Design of a Statically Balanced Serial Robot Using Remote Counterweights,” 2013 IEEE International Conference on Robotics and Automation (ICRA),, Karlsruhe, Germany, May 6-10, pp. 4189-4194.
    [12] Kim, H.-S., Song, J.-B., 2014, “Multi-Dof Counterbalance Mechanism for a Service Robot Arm,” IEEE/ASME Transactions on Mechatronics, 19(6), pp. 1756-1763.
    [13] French, M., Widden, M., 2000, “The Spring-and-Lever Balancing Mechanism, George Carwardine and the Anglepoise Lamp,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214(3), pp. 501-508.
    [14] Barents, R., Schenk, M., van Dorsser, W. D., Wisse, B. M., Herder, J. L., 2011, “Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators,” ASME Journal of Mechanical Design, 133(6), p. 061010.
    [15] Hsiu, W.-H., Syu, F.-C., Kuo, C.-H., 2015, “Design and Implementation of a New Statically Balanced Mechanism for Slider-Type Desktop Monitor Stands,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(9), pp. 1671-1685.
    [16] Wisse, B. M., van Dorsser, W. D., Barents, R., Herder, J., 2007, “Energy-Free Adjustment of Gravity Equilibrators Using the Virtual Spring Concept,” IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13-15 June, pp. 742-750.
    [17] Van Dorsser, W., Barents, R., Wisse, B., Schenk, M., Herder, J., 2008, “Energy-Free Adjustment of Gravity Equilibrators by Adjusting the Spring Stiffness,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(9), pp. 1839-1846.
    [18] Chang, H. H., Chen, D. Z., 2012, “Design of Statically Spring-Balancing Planar 3-Dof Articulated Manipulator with Variable Payload,” The 2nd IFToMM Asian Conference on Mechanism and Machine Science, Tokyo, Japan, 7-10 November.
    [19] Chang, H. H., Chen, D. Z., 2013, “Design of a 4-Link Planar Statically Balanced Serial Manipulator with Changeable Payload,” The 3rd IFToMM International Symposium on Robotics and Mechatronics, Singapore, 2-4 October.
    [20] Yang, Z.-W., Lan, C.-C., 2015, “An Adjustable Gravity-Balancing Mechanism Using Planar Extension and Compression Springs,” Mechanism and Machine Theory, 92, pp. 314-329.
    [21] Lauzier, N., Gosselin, C., Laliberté, T., Tremblay, P., 2009, “Adaptive Gravity Compensation of Decoupled Parallel and Serial Manipulators Using a Passive Hydraulic Transmission,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(12), pp. 2871-2879.
    [22] Laliberté, T., Gosselin, C. M., Jean, M., 1999, “Static Balancing of 3-Dof Planar Parallel Mechanisms,” IEEE/ASME Transactions on Mechatronics,, 4(4), pp. 363-377.
    [23] Wang, J., Gosselin, C. M., 1999, “Static Balancing of Spatial Three-Degree-of-Freedom Parallel Mechanisms,” Mechanism and Machine Theory, 34(3), pp. 437-452.
    [24] Wang, J., Gosselin, C. M., 2000, “Static Balancing of Spatial Four-Degree-of-Freedom Parallel Mechanisms,” Mechanism and Machine Theory, 35(4), pp. 563-592.
    [25] Agrawal, S. K., Gardner, G., Pledgie, S., 2001, “Design and Fabrication of an Active Gravity Balanced Planar Mechanism Using Auxiliary Parallelograms,” ASME Journal of Mechanical Design, 123(4), pp. 525-528.
    [26] Hain, K., 1961, “Spring Mechanisms—Point Balancing, and Spring Mechanisms—Continuous Balancing,” Spring Design and Application, pp. 268-275.
    [27] Nathan, R., 1985, “A Constant Force Generation Mechanism,” ASME Journal of Mechanisms, Transmissions and Automation in Design, 107(4), pp. 508-512.
    [28] Walsh, G., Streit, D., Gilmore, B., 1991, “Spatial Spring Equilibrator Theory,” Mechanism and Machine Theory, 26(2), pp. 155-170.
    [29] Streit, D., Shin, E., 1993, “Equilibrators for Planar Linkages,” ASME Journal of Mechanical Design, 115(3), pp. 604-611.
    [30] Ebert-Uphoff, I., Gosselin, C. M., Laliberté, T., 2000, “Static Balancing of Spatial Parallel Platform Mechanisms—Revisited,” ASME Journal of Mechanical Design, 122(1), pp. 43-51.
    [31] Rahman, T., Ramanathan, R., Seliktar, R., Harwin, W., 1995, “A Simple Technique to Passively Gravity-Balance Articulated Mechanisms,” ASME Journal of Mechanical Design, 117(4), pp. 655-658.
    [32] Koser, K., 2009, “A Cam Mechanism for Gravity-Balancing,” Mechanics Research Communications, 36(4), pp. 523-530.
    [33] Lin, P. Y., Shieh, W. B., Chen, D. Z., 2009, “Design of Perfectly Statically Balanced One-Dof Planar Linkages with Revolute Joints Only,” ASME Journal of Mechanical Design, 131(5), p. 051004.
    [34] Radaelli, G., Gallego, J. A., Herder, J. L., 2011, “An Energy Approach to Static Balancing of Systems with Torsion Stiffness,” ASME Journal of Mechanical Design, 133(9), p. 091006.
    [35] Deepak, S. R., Ananthasuresh, G., 2012, “Perfect Static Balance of Linkages by Addition of Springs but Not Auxiliary Bodies,” ASME Journal of Mechanisms and Robotics, 4(2), p. 021014.
    [36] Cho, C., Kang, S., 2014, “Design of a Static Balancing Mechanism for a Serial Manipulator with an Unconstrained Joint Space Using One-Dof Gravity Compensators,” IEEE Transactions on Robotics, 30(2), pp. 421-431.
    [37] Streit, D. A., Gilmore, B. J., 1989, “‘Perfect’ Spring Equilibrators for Rotatable Bodies,” ASME Journal of Mechanical Design, 111(4), pp. 451-458.
    [38] Lin, P. Y., Shieh, W. B., Chen, D. Z., 2010, “A Stiffness Matrix Approach for the Design of Statically Balanced Planar Articulated Manipulators,” Mechanism and Machine Theory, 45(12), pp. 1877-1891.
    [39] Lin, P. Y., Shieh, W. B., Chen, D. Z., 2010, “Design of a Gravity-Balanced General Spatial Serial-Type Manipulator,” ASME Journal of Mechanisms and Robotics, 2(3), p. 031003.
    [40] Lin, P. Y., 2012, “Design of Statically Balanced Spatial Mechanisms with Spring Suspensions,” ASME Journal of Mechanisms and Robotics, 4(2), p. 021015.
    [41] Lin, P. Y., Shieh, W. B., Chen, D. Z., 2012, “Design of Statically Balanced Planar Articulated Manipulators with Spring Suspension,” IEEE Transactions on Robotics, 28(1), pp. 12-21.
    [42] Lee, Y. Y., Chen, D. Z., 2014, “Determination of Spring Installation Configuration on Statically Balanced Planar Articulated Manipulators,” Mechanism and Machine Theory, 74, pp. 319-336.
    [43] Deepak, S. R., Ananthasuresh, G., 2012, “Static Balancing of a Four-Bar Linkage and Its Cognates,” Mechanism and Machine Theory, 48, pp. 62-80.
    [44] Banala, S. K., Agrawal, S. K., Fattah, A., Rudolph, K., Scholz, J. P., 2004, “A Gravity Balancing Leg Orthosis for Robotic Rehabilitation,” IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, 26 April-1 May, pp. 2474-2479.

    QR CODE