簡易檢索 / 詳目顯示

研究生: 周志正
Chih-cheng Chou
論文名稱: 先進內燃機與選擇性還原觸媒系統之建模與控制
Modeling and control of advanced internal combustion engines and urea SCR systems
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 盧昭暉
Jau-Huai Lu
陳柏全
Bo-Chiuan Chen
吳浴沂
YUH-YIH WU
蘇裕軒
Yu-Hsuan Su
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 157
中文關鍵詞: 均質進氣壓燃引擎共軌柴油引擎選擇性還原觸媒系統建模控制
外文關鍵詞: HCCI engines, common-rail diesel engines, selective catalytic reduction systems, modeling, control
相關次數: 點閱:301下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要探討均質壓燃引擎(Homogeneous Charge Compression Ignition Engine,
HCCI Engine)、共軌柴油引擎(Common Rail Diesel Engine, CR Diesel Engine)
及選擇性還原觸媒系統(Selective Catalyst Reduction System, SCR Systetm)
的建模與控制, 首先針對擁有低油耗及低污染之HCCI 引擎為研究主體, 建立以控制為
導向的HCCI 引擎燃燒循環的簡化參數模型, 發展雙線性動態的適應性控制器。控制
目標為固定的引擎轉速下, 當引擎環境參數產生變異時(如汽缸進排氣特性改變時), 以
參考模型適應性控制器(Model Reference Adaptive Controller, MRAC) 達成50%燃
油燃燒時間點(CA50) 的控制; 其次, 本研究也發展一套共軌柴油引擎的引擎管理系統
(Engine Management System, EMS), 可快速精準控制共軌燃油系統之共軌油壓、噴
油正時及噴油量。配合汽缸壓力的量測, 分析燃燒熱釋放的過程, 探討不同油品與不同
噴油參數控制, 對於引擎輸出功率及NOx 污染排放的影響。最後, 為了降低柴油引擎的
NOx 排放, 本文發展一套擁有高效率減量NOx 的SCR 後處理系統, 設計前饋規則庫
加PI 回授的控制器, 進行歐洲穩態及暫態循環測試(ESC 及ETC), 驗證SCR 系統
的NOx 減量效率及穩定性。並建立SCR 系統模型, 以標準反應器的測試數據鑑別模
型參數, 再搭配引擎實驗進行SCR 模型NOx 還原驗證與NH3洩漏的估測。最後提出
一套NH3對氮氧化物感測器(Smart NOx Sensor, SNS) 互感現象(Cross-Sensitivity)
的判別法則, 利用週期調變的尿素水溶液噴注, 搭配快速傅立葉(Fast Fourier Transform,
FFT) 的分析, 經實驗驗證本判斷法則能有效判別SNS 讀值的正確性, 並偵測
SCR 系統NH3洩漏之時機。


This thesis presents the modeling and control of homogeneous charge compression
ignition (HCCI) engines, common rail (CR) diesel Engines and selective
catalytic reduction (SCR) systems. First of all, for stability of HCCI engines,
A model reference adaptive controller (MRAC) is designed based on a simplified
bilinear parametric model to regulate the combustion timing CA50 in the presence
of uncertainty or unknown variation in plant parameters such as cylinder
charge properties. The adaptive controller is developed based on a simplified
control-oriented HCCI cycle-to-cycle ignition timing dynamics model. The simulation
results show that the controller is able to regulate the combustion timing
CA50 to desired set-point via controlling the rebreathing lift of exhaust valve when
a cylinder charge properties are changing with time. Secondly, an engine management
system (EMS) is developed for a common-rail diesel engine to achieve
precise and flexible control of the rail pressure, fuel injection timing and injected
fuel amount. Real-time calculation of the combustion heat release rate (HRR)
is conducted based on the cylinder pressure measurement to examine the effect
of various fuel types and injection parameters on engine brake power and NOx
emission. To reduce the tail-pipe NOx emission of diesel engine, a controller for
selective catalytic reduction (SCR) system is developed. Experimental tests in
European Stationary Cycle (ESC) and European Transient Cycle (ETC) driving
modes are conducted to demonstrate the performance and reliability of the SCR
system with a rule-based feedforward plus PI feedback controller. A SCR model
is then developed and is validated against experimental data. Finally, an effective
method that identifies the cross-sensitivity of SNS to ammonia is proposed on the
basis of a periodic modulation of the urea dosage rate and Fast Fourier Transform
(FFT) of the SNS signal. This method enables us to measure the true NOx
concentration correctly even if the NOx is overkilled by excessive ammonia.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 1 簡介 1 1.1 研究背景 1 1.1.1 均質進氣壓燃(Homogeneous Charge Compression Ignition, HCCI) 引擎 2 1.1.2 共軌柴油噴射(Common-Rail Diesel Injection, CRDI) 引擎 3 1.1.3 選擇性還原觸媒(Selective Catalytic Reduction, SCR) 系統 4 1.2 研究動機 5 1.3 研究架構 6 1.4 研究貢獻 7 2 均質進氣壓燃(HCCI) 引擎燃燒時間點適應性控制 9 2.1 簡介 9 2.2 HCCI 引擎模型 14 2.2.1 平均值模型(Mean Value Model, MVM) 14 2.2.2 簡化參數模型(Simplified Parametric Model, SPM) 25 2.2.3 模型驗證與靈敏度分析 29 2.3 適應性控制器發展 32 2.3.1 控制器設計 32 2.3.2 收斂性分析 34 2.4 模擬結果與討論 39 2.4.1 引擎負載變異之CA50控制與分析 41 2.4.2 進氣溫度變異之CA50控制與分析 46 2.4.3 進氣成分變異之CA50控制與分析 47 2.4.4 燃油成分變異之CA50控制與分析 48 2.4.5 CA50追蹤控制與分析 49 2.5 結論 50 3 共軌柴油引擎之引擎管理系統(EMS) 發展及燃燒熱釋放分析 62 3.1 簡介 62 3.1.1 柴油引擎管理系統(EMS) 發展 62 3.1.2 柴油引擎NOx 排放生成機制 63 3.1.3 生質柴油引擎NOx 排放探討 66 3.1.4 小結 67 3.2 實驗系統介紹 69 3.3 引擎管理系統EMS 架構 71 3.3.1 共軌壓力控制器設計 72 3.3.2 燃油噴嘴控制器設計 73 3.3.3 EGR控制器設計 75 3.4 引擎管理系統EMS 調校 76 3.4.1 共軌測試平台測試 76 3.4.2 柴油引擎動力計測試 77 3.5 實驗結果與討論 79 3.5.1 最佳噴油正時分析 80 3.5.2 燃燒熱釋放率分析 82 3.5.3 NOx 污染排放分析 90 3.6 結論 93 4 選擇性還原觸媒(SCR) 系統之建模與控制 97 4.1 簡介 97 4.2 實驗系統介紹 101 4.3 SCR系統控制器發展 107 4.4 實驗結果與討論 113 4.4.1 使用化石柴油之SCR 系統De-NOx 測試 113 4.4.2 使用生質柴油之SCR 系統De-NOx 測試 115 4.5 SCR系統模型建立與驗證 119 4.5.1 SCR系統模型 119 4.5.2 SCR反應速率參數鑑別 126 4.5.3 SCR系統模型驗證 127 4.6 NH3對氮氧化物感測器之互感現象判別法則 132 4.6.1 互感現象(cross-sensitivity) 與快速傅利葉(FFT) 分析 134 4.6.2 應用於尿素選擇性還原觸媒系統之氣體互感現象分析方法 138 4.7 結論 141 5 總結與未來展望 143 5.1 總結 143 5.2 未來展望 145 附錄 146 參考文獻 153

[1] 尤帕海雅等, 校正對存儲在選擇性催化還原系統內NH3的估算的方法. 中華人民共和國發明專利
CN102691551A, 2012.
[2] 巴萊諾維奇等, 用於排氣系統的NOx 傳感器的過慮方法和過濾器. 中華人民共和國發明專利
CN102817685A, 2012.
[3] 林英瑋, 使用生質柴油共軌柴油引擎之控制參數調校. 碩士論文, 國立臺灣科技大學, 台北, 2013.
[4] 阿帕德耶等, 選擇性催化還原系統下跌量的估算方法. 中華人民共和國發明專利CN102691559A,
2012.
[5] http://www.cybernet-ap.com.tw/zh.php.思渤科技MCS kits 電子控制模組.
[6] 蔡瀛逸等, 柴油車氮氧化物多環芳香烴化合物及粒狀污染物排放減量技術及策略之研究. 環保署/國
科會空污防制科研合作計畫, 2012.
[7] J. E. Dec, “Advanced compression-ignition engines-understanding the in-cylinder processes,”
Proceedings of the Combustion Institute, vol. 32, pp. 2727–2742, 2009.
[8] C. J. Chiang, “Modeling and contorl of homogeneous charge compression ignition engines
with high dilution,” Ph.D. dissertation, University of Michigan, 2007.
[9] L.Guzzalla and C.H.Onder, Introduction to Modeling and Control of Internal Combustion
Engine System. Springer, 2004.
[10] G. Singh, “Overview of the doe advanced combustion engine r&d program,” U.S. Department
of Energy Vehicle Technologies Office 2013.
[11] http://energy.gov/eere/vehicles.
[12] http://aqmc.epa.gov.tw/.
[13] J.-M. Kang and M. Drunzhinina, “HCCI engine control strategy with external EGR,” in
Proc. of the American Control Conf., 2010, pp. 3783–3790.
[14] N. J. Killingsworth, S. M. Aceves, D. L. Flowers, F. Espinosa-Loza, and M. Krsti’c, “HCCI
engine combustion-timing control: Optimizing gains and fuel consumption via extremum
seeking,” IEEE Transactions on Control Systems Technology, vol. 17, no. 6, pp. 1350–1361,
November 2009.
[15] H. Zargarzadeh, S. Jagannathan, and J. Drallmeier, “Robust optimal control of uncertain
nonaffine MIMO nonlinear discrete-time systems with application to HCCI engines,” Int.
J. Adapt. Control Signal Process., vol. 26, no. 7, pp. 592–613, 2012.
[16] A. Widd, H.-H. Liao, J. C. Gerdes, P. Tunest˚al, and R. Johansson, “Control of exhaust
recompression HCCI using hybrid model predictive control,” in Proc. of the American
Control Conf., 2011, pp. 420–425.
[17] S. Jade, E. Hellstr‥om, L. Jiang, and A. G. Stefanopoulou, “Fuel governor augmented control
of recompression HCCI combustion during large load transients,” in Proc. of the American
Control Conf., 2012, pp. 2084–2089.
[18] A. F. Jungkunz, S. Erlien, and J. C. Gerdes, “Late phasing homogeneous charge compression
ignition cycle-to-cycle combustion timing control with fuel quantity input,” in Proc. of the
American Control Conf., 2012, pp. 2078–2083.
[19] J. O. Olsson, P. Tunestal, B. Johansson, S. Fiveland, R. Agama, M. Willi, and D. Assanis,
“Compression ratio influence on maximum load of a natural gas fueled HCCI engine,” in
SAE paper 2002-01-0111.
[20] D. S. Stanglmaier and E. Roberts, “Homogenous charge compression ignition (HCCI): Benefits,
compromises, and future engine applications,” in SAE paper 1999-01-3682.
[21] J. Bengtsson, P. Strandh, R. Johansson, P. Tunest‥al, and B. Johansson, “Closed-loop combustion
control of homogeneous charge compression ignition (HCCI) engine dynamics,” Int.
J. Adapt. Control Signal Process., vol. 18, no. 2, pp. 167–179, 2004.
[22] P. Najt and D. Foster, “Compression-ignited homegeneous charge combustion,” in SAE
paper 830264.
[23] C. J. Chiang and A. G. Stefanopoulou, “Sensitivity analysis of combustion timing and duration
of homogeneous charge cmpression ignition (HCCI) engines,” in Proc. of the American
Control Conf., 2006, pp. 1857–1862.
[24] R. H. Thring, “Homegeneous-charge compression-ignition (HCCI) engines,” in SAE paper
892068.
[25] C. J. Chiang and A. G. Stefanopoulou, “Sensitivity analysis of combustion timing of homogeneous
charge compression ignition gasoline engines,” ASME Journal of Dynamic Systems,
Measurement and Control, vol. 131, no. 1, p. 01456, January 2009.
[26] J. Martinez-Frias, S. M. Aceves, D. Flowers, J. R. Smith, and R. Dibble, “HCCI control by
thermal management,” in SAE paper 2000-01-2869.
[27] C. J. Chiang and A. G. Stefanopoulou, “Stability analysis in homogeneous charge compression
ignition (HCCI) engines with high dilution,” in IEEE Transactions on Control Systems
Technology, vol. 15, March 2007, pp. 209–219.
[28] ——, “Steady-state multiplicity and stability of thermal equilibria in homogeneous charge
compression ignition (HCCI) engines,” in 43rd IEEE Conference on Decision and Control,
vol. 2, 2004, pp. 1676–1681.
[29] ——, “Control of thermal ignition in gasoline engines,” in Proc. of the American Control
Conf., 2005, pp. 3847–3852.
[30] M. V. Subbotin, K. L. Knierim, S. Park, A. Kojic, and J. Ahmed, “Modeling and control
of a two stroke HCCI engine,” in Proc. of the American Control Conf., 2008, pp. 698–703.
[31] N. Ravi, M. J. Roelle, H.-H. Liao, A. F. Jungkunz, C.-F. Chang, S. Park, and J. C. Gerdes,
“Model-based control of HCCI engines using exhaust recompression,” in IEEE Transactions
on Control Systems Technology, vol. 18, no. 6, November 2010, pp. 1289–1302.
[32] J.-M. Kang, “Sensitivity analysis of auto-ignited combustion in hcci engines,” in SAE paper
2010-01-0573.
[33] H.-H. Liao, N. Ravi, A. F. Jungkunz, J.-M. Kang, and J. C. Gerdes, “Representing recompression
HCCI dynamics with a switching linear model,” in Proc. of the American Control
Conf., 2010, pp. 3803–3808.
[34] C. J. Chiang, A. G. Stefanopoulou, and M. Jankovi’c, “Nonlinear observer-based control
of load transitions in homogeneous charge compression ignition (HCCI) engines,” in IEEE
Transactions on Control Systems Technology (Special Issue on Control Applications in Automotive
Engineering), vol. 15, May 2007, pp. 438–448.
[35] C. J. Chiang, C.-C. Huang, and M. Jankovic, “Discrete-time cross-term forwarding design
of robust controllers for HCCI engines,” in Proc. of the American Control Conf., 2010, pp.
2218–2223.
[36] P. Loannou and B. Fidan, Adaptive Control Tutorial. Society of Industrial and Applied
Mathematics, 2006.
[37] G. Goodwin, P. Ramadge, and P. Caines, “Discrete time multivariable adaptive control,”
IEEE Transactions on Automatic Control, vol. 18, pp. 335–340, Dec 1979.
[38] Y. Jin, X. Sun, and C. Fang, “Adaptive control of bilinear systems with bounded disturbances,
and its application,” Control Eng. Practice, vol. 4, no. 6, pp. 815–822, 1996.
[39] J. B. Heywood, Internal Combustion Engine Fundamentals. McGraw-Hill Inc, 1988.
[40] C. J. Chiang, A. G. Stefanopoulou, and M. Jankovi’c, “Nonlinear control of transitions
between thermal equilibria in homogeneous charge compression ignition (HCCI) engines,” in
Proc. of the 8th International Symposium on Advanced Vehicle Control (AVEC06), August
2006, pp. 617–622.
[41] J. C. Livengood and P. C. Wu, “Correlation of autoignition phenomena in internal combustion
engines and rapid compression machines,” in Proceedings of Fifth International
Symposium on Combustion, 1955, pp. 347–356.
[42] C. Ji and P. D. Ronney, “Modeling of engine cyclic variations by a thermodynamic model,”
SAE paper 2002-01-2736.
[43] C.-F. Tumelaire, D. Gurney, T. Cains, N. Milovanovic, and M.Warth, “Flexible ecu function
development calibration and engine performance assessment based on co-simulation,” SAE
Paper 2013-01-0342.
[44] K.-H. Baek, “An experimental study of ems control parameter optimization for the use of
biodiesel blend fuel,” SAE Paper 2010-01-2272.
[45] Y. Wang, Y. Zhao, F. Xiao, and D. Li, “Combustion and emission characteristics of a
diesel engine with dme as port premixing fuel under different injection timing,” Energy
Conversion and Management, vol. 77, pp. 52–60, 2014.
[46] A. K. Agarwal, D. K. Srivastava, A. Dhar, R. K. Maurya, P. C. Shukla, and A. P. Singh,
“Effect of fuel injection timing and pressure on combustion, emissions and performance
characteristics of a single cylinder diesel engine,” Fuel, vol. 111, pp. 374–383, 2013.
[47] G. Stumpp and M. Ricco, “Common rail - an attractive fuel injection system for passenger
car di diesel engine,” SAE Technical Paper 960870.
[48] P. Lino, B. Maione, and A. Rizzo, “Nonlinear modelling and control of a common rail
injection system for diesel engine,” Applied Mathematical Modelling, vol. 31, pp. 1770–1784,
2007.
[49] J. Hinkelbein, F. Kremer, M. Lamping, T. Korfer, J. Schaub, and S. Pischinger, “Experimental
realisation of predefined diesel combustion processes using advanced closed-loop
combustion control and injection rate shaping,” International Journal of Engine Research,
vol. 13, pp. 607–615, 2012.
[50] A. di Gaeta, G. Fiengo, A. Palladino, and V. Giglio, “Design and experimental validation
of a model-based injection pressure controller in a common rail system for gdi engine,” in
Proc. of the American Control Conf., pp. 5273–5278, 2011.
[51] J. A. Swanson et al., ANSYS FLUENT Guide. ANSYS Inc, 2009.
[52] Assessment, S. D. O. of Transportation, A. Quality et al., “A comprehensive analysis of
biodiesel impacts on exhaust emissions,” United States Environmental Protection Agency,
EPA420-P-02-001, Tech. Rep., Octorber 2002.
[53] M. Lapuerta, O. Armas, and J. Rondriguez-Fernandez, “Effect of biodiesel fuels on diesel
emissions,” Progress in Energy and Combustion Science, vol. 34, pp. 198–223, 2007.
[54] R. McCormick, C. Tennant, R. Hayes, S. Black, J. Ireland, T. McDaniel, A. Williams,
M. Frailey, and C. Sharp, “Regulated emissions from biodiesel tested in heavy-duty engines
meeting 2004 emission standards,” SAE 2005-01-2200.
[55] W. Yuan, “Computational modeling of nox emissions from biodiesel combustion based on
accurate fuel properties,” Ph.D. dissertation, IowaStateUniversity, 2003.
[56] H. S. Fogler, Elements of chemical reaction engineering. Upper Saddle River,NJ, Prentice
Hall PTR, 2006.
[57] E. T. L. Lietti, I. Nova and P. Forzatti, “Transient kinetic study of the scr-denox reaction,”
Catalysis Today, vol. 45, pp. 85–92, 1998.
[58] F. Willems and R. Cloudt, “Experimental demonstration of a new model-based scr control
stretage for cleaner heavy-duty diesel engines,” IEEE transactions on control systems
technology, vol. 19, pp. 1305–1313, 2011.
[59] J. Patchett, R. Verbeek, K. Grimston, G. Rice, J. Calabrese, and M. van Genderen, “Control
system for mobile scr applications,” U.S. Patent 6 581 374, Jun. 24, 2003.
[60] D. Seher, M. Reichelt, and S. Wickert, “Control strategy for -emission reduction with scr,”
SAE, Warrendale, PA,Tech. Rep. 2003-01-3362, 2003.
[61] J. Chi and H. DaCosta, “Modeling and control of a urea-scr aftertreatment system,” SAE,
Warrendale, PA, Tech. Rep. 2005-01-0966, 2005.
[62] D. Upadhyay and M. van Nieuwstadt, “Model based analysis and control design of a ureascr
aftertreatment system,” IASME J. Dyn. Syst., Meas., Control, vol. 128, pp. 737–741,
2006.
[63] S. J1939-71, “Surface vehicle recommended practice,” JUN (2006).
[64] D. Upadhyay and M. van Nieuwstadt, “Modeling of a urea scr catalyst of automotive
applications,” ASME International Mechanical Engineering Congress and Exposition, 2002.
[65] C. M. Schar, C. H. Onder, and H. P. Geering, “Control of an scr catalytic converter system
for a mobile heavy-duty application,” IEEE TRANSACTIONS ON CONTROL SYSTEMS
TECHNOLOGY, vol. 14, pp. 641–653, 2006.
[66] M. F. Hsieh and J. Wang, “An extended kalman filter for nox sensor ammonia cross- sensitivity
elimination in selective catalytic reduction applications,” in Proc. of the American
Control Conf., 2010, pp. 3033–3038.

無法下載圖示 全文公開日期 2019/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE