簡易檢索 / 詳目顯示

研究生: 朱炳勳
Ping-Hsun Chu
論文名稱: 以射頻電漿輔助化學氣相沉積法製備 P型矽薄膜及其光電性質之研究
Optoelectronic Properties of P-type Silicon Films Prepared by RF-PECVD
指導教授: 洪儒生
Lu-sheng Hong
口試委員: 蔡娟娟
Chuang-chuang Tsai
丁定國
Ding-kuo Ding
吳泉毅
Chuan-yi Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 116
中文關鍵詞: 射頻電漿輔助化學氣相沉積三甲基硼非晶碳化矽微晶矽摻雜窗口層薄膜太陽能電池
外文關鍵詞: amorphous silicon carbide, RF-PECVD, trimethylboron, hydrogenated microcrystalline silicon, doping, window layer, thin film solar cell
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以三甲基硼(TMB)為摻雜物,使用射頻電漿輔助化學氣相沉積系統(RF-PECVD)於玻璃基材上成長p型非晶碳化矽以及p型微晶矽薄膜,並分析其結構及光電性質,期望能製備出適用於薄膜太陽能電池的p型窗口層。實驗結果顯示,藉由通入甲烷能成功提升薄膜的光學品質,當甲烷對矽甲烷流量比為2時,非晶碳化矽薄膜的暗導電率為4.9 10-7 S/cm,且光學能隙達2 eV以上,其透光性明顯優於非晶矽薄膜。另一方面,隨著氫氣稀釋比的提高,薄膜由非晶矽轉變成微晶矽的結構,以氫氣對矽甲烷稀釋比100、基材溫度220oC所成長出厚度為85 nm的p型微晶矽薄膜,其結晶體積分率約52%,暗導電率達10-1 S/cm以上。我們進一步將沉積時間縮短,即使厚度縮小至35 nm,經由氬氣下的退火處理後,亦能獲得暗導電率為10-2 S/cm的微晶矽薄膜。


    In this thesis, the p-type amorphous silicon carbide (a-SiC) and p-type hydrogenated microcrystalline silicon (μc-Si:H) films were deposited on glass by radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD) using trimethylboron (TMB) as the doping source. For optimization of the window layer, the dependence of electrical and optical properties were investigated.
    In the first part, we deposited p-type a-SiC with methane and silane. The dark conductivity and optical gap of the film deposited at [CH4]/[SiH4]=2 were 4.9 10-7 S/cm and 2 eV, respectively. The result showed that the films were more transparent than amorphous silicon.
    In the second part, the crystalline volume fraction of μc-Si:H were enhanced with increasing hydrogen dilution. The crystalline volume fraction of 52% and dark conductivity of 1.31×10-1 S/cm can be achieved under the following condition: [H2]/[SiH4]=100 and Ts=220oC. This result showed that the film with thickness of 85 nm possessed a good electrical property. However, it’s too thick for the window layer in the thin film solar cell. Finally, a thinner film with thickness of 35 nm which we deposited had a high dark conductivity around 10-2 S/cm after the sample annealed under Ar atmosphere at 200oC for 1 hr, and it was suitable for thin film solar cell.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖 索 引 VII 表 索 引 XIII 第一章 緒論 1 1.1 前言 1 1.2 非晶矽薄膜的性質 3 1.3 微晶矽薄膜的性質 8 1.4 矽薄膜太陽能電池的光電轉換原理 14 1.5 矽薄膜太陽能電池之p型窗口層 16 1.5.1 p型矽薄膜的摻雜物比較 16 1.5.2 p型非晶碳化矽薄膜 18 1.5.3 p型微晶矽薄膜 21 1.6 研究目的與方向 23 第二章 實驗相關部分 24 2.1 實驗藥品與氣體 24 2.2 實驗裝置 27 2.3 實驗步驟 29 2.4 分析儀器 30 2.4.1 紫外光/可見光光譜儀(UV/VIS) 30 2.4.2 表面形態輪廓儀(Surface Profiler) 32 2.4.3 X射線電子能譜化學分析儀(XPS) 33 2.4.4 拉曼光譜儀(Raman) 34 2.4.5 IV量測系統(IV) 36 2.4.6 太陽光模擬器(Solar Simulator) 37 2.4.7 傅立葉紅外線光譜儀(FT-IR) 40 第三章 結果與討論 41 3.1 成長p型非晶碳化矽薄膜 41 3.1.1 甲烷流量對成長p型非晶碳化矽薄膜的影響 41 3.1.2 摻雜濃度對成長p型非晶碳化矽薄膜的影響 53 3.1.3 氫氣稀釋比對成長p型非晶碳化矽薄膜的影響 59 3.2 成長p型微晶矽薄膜 68 3.2.1 氫氣稀釋比對成長p型微晶矽薄膜的影響 68 3.2.2 基材溫度對成長p型微晶矽薄膜的影響 79 3.2.3 摻雜濃度對成長p型微晶矽薄膜的影響 86 3.2.4 沉積時間對成長p型微晶矽薄膜的影響 92 3.2.5 退火對成長p型微晶矽薄膜的影響 98 3.3 非晶矽薄膜太陽能電池的製備 101 第四章 結論 108 參考文獻 110 作者簡介 116

    [1] KRI Report, Solar Cells, 8 (2005).
    [2] R. C. Chittick, J. H. Alexander and H. F. Sterling, “The preparation and properties of amorphous silicon,” J. Electrochem. Soc., Vol.116, pp.77-81 (1969).
    [3] W. E. Spear and P. G. Le Comber, “Substitutional doping of amorphous silicon,” Solid State Commun., Vol.17, pp.1193-1196 (1975).
    [4] D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett., Vol.28, pp.671-673 (1976).
    [5] M. Stutzmann, D. K. Biegelsen and R. A. Street, “Detailed investigation of doping in hydrogentated amorphous silicon and germanium,” Phys. Rev. B, Vol.35, pp.5666-5701 (1987).
    [6] M. H. Cohen, H. Fritzsche and S. R. Ovshinsky, “Simple band model for amorphous semiconducting Alloys,” Phys. Rev. Lett., Vol.22, pp.1065-1068 (1969).
    [7] D. E. Carson & C. R. Wronski, “Amorphous silicon Solar Cells,” Pennsylvania State University, USA (2007).
    [8] J. Tauc, “Absorption edge and internal electric fields in amorphous semiconductors,” Mat. Res. Bull., Vol.5, pp.721-730 (1970).
    [9] S. Veprek and V. Marecek, “The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport,” Solid State Electronics, Vol.11, pp.683-684 (1968).
    [10] C. Droz, “Thin film microcrystalline silicon layers and solar cells:microstructure and electrical performances,” thesis, Department of Microtechnique, University of Neuchatel, (2003).
    [11] A. Matsuda, “Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma,” J. Non-Cryst. Solids, Vol.59 & 60, pp.767-774 (1983).
    [12] A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas,” Thin Solid Films, Vol.337, pp.1-6 (1999).
    [13] C. C. Tsai, G. B. Anderson, R. Thompson and B. Wacker, “Control of silicon network structure in plasma deposition,” J. Non-Cryst. Solids, Vol.114, pp.151-153 (1989).
    [14] K. Nakamura, K. Yoshino, S. Tekeoka and I. Shimizu, “Roles of atomic hydrogen in chemical annealing,” Jpn. J. Appl. Phys, Vol.34, pp.442-449, (1995).
    [15] R. W. Collins, A. S. Ferlauto, G. M. Ferreira, C. Chen, J. Koh, R. J. Koval, Y. Lee, J. M. Pearce and C. R. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studies by real time spectroscopic ellipsometry,” Sol. Energy Mater. Sol. Cells, Vol.78, pp.143-180 (2003).
    [16] A. V. Shan, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. wyrsch, U. Kroll, C. Droz and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt: Res. Appl., Vol.12, pp.113-142 (2004)
    [17] A. Gordijn, “Microcrystalline silicon for thin-film solar cells,” Dr. Eng. Thesis, Department of physics and Astronomy, University of Utrecht, Netherlands (2005).
    [18] J. Meier, S. Dubail, R. Flückiger, D. Fischer, H. Keppner, A. Shah, Proc. Of the First World Conference on Photovoltaic Energy Conversion, Hawaii, USA, pp.409 (1994).
    [19] A. V. Shah, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz and U. Graf, “Material and solar cell research in microcrystalline silicon,” Sol. Energy Mater. Sol. Cells, Vol.78, pp.469-491 (2003).
    [20] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., Vol.25, pp.676-677 (1954).
    [21] J. Koh, H. Fujiwara, R. J. Kovl, C. R. Wronski and R. W. Collins, “Real time spectroscopic ellipsometry studies of the nucleation and growth of p-type microcrystalline silicon films on amorphous silicon using B2H6, B(CH3)3 and BF3 dopant source gases,” J. Appl. Phys., Vol.85, pp.4141-4153 (1999).
    [22] S. Nakano, N. Kakamura, K. Ninomiya, H. Tarui, T. Matsuyama, M. Nishikuni, S. Kiyama, Y. Hishikawa, H. Dohjo, S. Tsuda, M. Ohnishi, Y. Kishi and Y. Kuwano, “New materials and new analysis method for high-efficiency a-Si solar cells,” IEEE, pp.123-128 (1998).
    [23] H. Tarui, T. Matsuyama, S. Okamoto, H. Dohjoh, Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, M. Ohnishi and Y. Kuwano, “High-quality p-type a-SiC films obtained by using a new doping gas of B(CH3)3,” Jpn. J. Appl. Phys, Vol.28, No.12, pp.2436-2440 (1989).
    [24] B. Rech and H. Wagner, “Potential of amorphous silicon for solar cell,” Appl. Phys. A, Vol.69, pp.155-167 (1999).
    [25] D. A. Anderson and W. E. Spear, “Electrical and optical properties of amorphous silicon carbide, silicon nitride and germanium carbide prepared by the glow discharge technique,” Philos. Mag., Vol.35, pp.1-16 (1977).
    [26] U. Coscia, G. Ambrosone, S. Lettieri, P. Maddalena, V. Rigato, S. Restello, E. Bobeico and M. Tucci, “Preparation microcrystalline silicon-carbon films,” Sol. Energy Mater. Sol. Cells, Vol.87, pp.433-444 (2005).
    [27] L. Wang, J. Xu, T. Ma, W. Li, X. Huang and K. Chen, “The influence of the growth conditions on the structural and optical properties of hydrogenated amorphous silicon carbide thin films,” J. Alloys Compd., Vol.290, pp.273-278 (1999).
    [28] I. Pereyra, C. A. Villacorta and M. N. P. Carreño, “Highly ordered amorphous silicon-carbon alloys obtained by RF PECVD,” Vol.30, No.3, pp.533-540 (2000).
    [29] I. Pereyra and M. N. P. Carreño, “Wide gap a-Si1-xCx:H thin films obtained under starving plasma deposition conditions,” J. Non-Cryst. Solids, Vol.201, pp.110-118 (1996).
    [30] J. P. Kleider, C. Longeaud, M. Gauthier, M. Meaudre, R. Meaudre, R. Butté, S. Vignoli and P. R. Cabarrocas, “Very low densities of localized states at the Fermi level in hydrogenated polymorphous silicon from capacitance and space-charge limited,” Appl. Phys. Lett., Vol.75, No.21, pp.3351-3353 (1999).
    [31] S. Ghosh, A. De, S. Ray and A. K. Barua, “Role of hydrogen dilution and diborane doping on the growth mechanism of p-Type microcrystalline silicon films prepared by photochemical vapor deposition,” J. Appl. Phys., Vol.71, pp.5205-5211 (1992).
    [32] R. Saleh and N. H. Nickel, “Raman spectroscopy of B-doped microcrystalline silicon films,” Thin Solid Films, Vol.427, pp.266-269 (2003).
    [33] Q. S. Lei, Z. M. Wu, J. P. XI, X. H. Geng, Y. Zhao and J. Sun, “Development of highly conductive boron-doped microcrystalline silicon films for application in solar cells,” Int. J. Mod. Phys. B, Vol.20, No.3, pp.303-314 (2006).
    [34] T. Bronger and R. Carius, “Carrier mobilities in microcrystalline silicon films,” Thin Solid Films, Vol.515, pp.7486-7489 (2007).
    [35] K. Shimakawa, “Electronic and optical properties of hydrogenated microcrystalline silicon: review,” J. Mater. Sci.: Mater. Electron., Vol.15, pp.63-67 (2004).
    [36] S. Hamma and P. R. Cabarrocas, “Low-temperature Growth of Thick Intrinsic and Ultrathin Phosphorous or Boron-doped Microcrystalline Silicon Films- Optimum Crystalline Fractions for Solar Cell Applications,” Sol. Energy Mater. Sol. Cells, Vol.69, pp.217-239 (2001).
    [37] P. Kumar, D. Bhusari, D. Grunsky, M. Kupich and B. Schroeder, “p-doped μc-Si:H window layer prepared by hor-wire CVD for amorphous solar cell application,” Sol. Energy Mater. Sol. Cells, Vol.90, pp.3345-3355 (2006).
    [38] I. Karabay, “The influence of carbon and boron atoms on the optical and electrical properties of thin film a-Si:H,” Mod. Phys. Lett. B, Vol.20, No.25, pp.1591-1596 (2006).
    [39] M. Mulato, I. Chambouleyron, E. G. Birgin and J. M. Martínez, “Determination of thickness and optical constants of amorphous silicon films of transmittance data,” Appl. Phys. Lett., Vol.77, pp.2133-2135 (2000).
    [40] P. Chaudhuri, S. Ray, A. K. Batabyal and A. K. Barua, “Properties of undoped and p-type hydrogenated amorphous silicon carbide films,” Thin Solid Films, Vol.121, pp.233-246 (1984).
    [41] A. Morimoto, T. Miura, M. Kumeda and T. Shimizu, “Glow discharge a-Si1-xCx:H films studied by ESR and IR measurements,” Jpn. J. Appl. Phys, Vol.21, No.2, pp.L119-L121 (1982).
    [42] C.R.A. Catlow, Defects and Disorder in Crystalline and Amorphous Solids, NATO ASI Series, London, pp.271 (1994).
    [43] A. M. Funde, N. A. Bakr, D. K. Kamble, R. R. Hawaldar, D. P. Amalnerkar and S. R. Jadkar, “Influence of hydrogen dilution on structure, electrical and optical properties of hydrogenated nanocrystalline silicon (nc-Si:H) thin films prepared by plasma enhanced chemical vapour deposition (PE-CVD),” Sol. Energy Mater. Sol. Cells, Vol.92, pp.1217-1223 (2008).
    [44] T. Sasaki, S. Fujikake and Y. Ichikawa, “Structural properties of p-type microcrystalline silicon as a window layer of solar cells,” Jpn. J. Appl. Phys., Vol.39, pp.4707-4711 (2000).
    [45] A. Matsuda, M. Takai, T. Nishimoto, M. Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate,” Sol. Energy Mater. Sol. Cells, Vol.78, pp.3-26 (2003).
    [46] A. Matsuda, “Thin film silicon-Growth process and solar cell application,” Jpn. J. Appl. Phys., Vol.43, No.12, pp.7909-7920 (2004).
    [47] G. Ambrosone, U. Coscia, R. Murri, N. Pinto, M. Ficcadenti and L. Morresi, “Structural, optical and electrical characterizations of μc-Si:H films deposited by PECVD,” Sol. Energy Mater. Sol. Cells, Vol.87, pp.375-386 (2005).
    [48] L. Q. Song, W. Z. Meng, G. X. Hua, Z Ying, S. Jian and X. J. Ping, “Effect of substrate temperature on the growth and properties of boron-doped microcrystalline silicon films,” Chin. Phys., Vol.15, pp.213-218 (2006).
    [49] J. Robertson and M. J. Powell, “Deposition, defect and weak bond formation process in a-Si:H,” Thin Solid Films, Vol.337, pp.32-36 (1999).
    [50] X. L. Jiang, Y. L. He and H. L. Zhu, “The effect of passivation of boron dopants by hydrogen in nano-crystalline and micro-crystalline silicon films,” J. Phys. Condens. Matter., Vol.6, pp.713-718 (1994).
    [51] D. Das and M. Jana, “Development of highly conducting p-type μc-Si:H films from minor diborane doping in highly hydrogenated SiH4 plasma,” Mater. Lett., Vol.58, pp.980-985 (2004).
    [52] P. Kumar, M. Kupich, D. Grunsky and B. Schroeder, “Microcrystalline B-doped window layer prepared near amorphous to microcrystalline transition by HWCVD and its application in amorphous silicon solar cells,” Thin Solid Films, Vol.501, pp.260-263 (2006).
    [53] H. Okamoto, Y. Nitta, T. Yamaguchi and Y. Hamakawa, “Device physics and design of a-Si ITO/p-i-n heteroface solar cells,” Sol. Energy Mater., Vol.2, pp.313-325 (1980).
    [54] A. Dasgupta, A. Lambertz, O. Vetterl, F. Finger, R. Carius, U. Zastrow, H. Wagner, “P-layers of microcrystalline silicon thin film solar cells,” 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow, UK (2000).
    [55] P. R. Cabaroocas, N. Layadi, T. Heitz and B. Drévillon, “Substrate selectivity in the formation of microcrystalline silicon: mechanisms and technological consequences,” Appl. Phys. Lett., Vol.66, pp.3609-3611 (1995).
    [56] F. Finger, R. Carius, T. Dylla, S. Klein, S. Okur and M. Günes, “Stability of microcrystalline silicon for thin films solar cell applications,” IEE Proc.-Circuits Devices Syst., Vol.150, No.4, pp.300-308 (2003).
    [57] J. K. Rath and R. E. I. Schropp, “Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure,” Sol. Energy Mater. Sol. Cells, Vol.53, pp.189-203 (1998).
    [58] Photovoltaic Devices and Applications online course, University of New South Wales, Sydney, Australia (2009).

    無法下載圖示 全文公開日期 2014/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE