簡易檢索 / 詳目顯示

研究生: 連宦斌
Huan-bin Lian
論文名稱: 金屬氧化物成長於奈米碳管上之電子場發射特性分析
Analysis of Electron Field Emission Characteristics of Metal Oxide Coated Carbon Nanotubes
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 黃鶯聲
Ying-Sheng Huang
趙良君
Liang-Chiun Chao
邱博文
Po-Wen Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 73
中文關鍵詞: 奈米碳管化學氣相沉積法二氧化釕氧化鋅電子場發射效應
外文關鍵詞: carbon nanotube, chemical vapor deposition, ruthenium dioxide, zinc oxide, electron field emission
相關次數: 點閱:451下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最理想化的六角形陣列之奈米碳管束使用熱化學氣相沉積法合成,為了增強奈米碳管的電子場發射特性,針形狀的二氧化釕與錐形狀的氧化鋅奈米結構分別使用金屬有機化學氣相沉積法與熱化學氣相沉積法成長於奈米碳管的表面。經由穿透式電子顯微鏡影像觀察得知,針形狀的二氧化釕與錐形狀的氧化鋅奈米結構皆均勻的成長於奈米碳管表面。而奈米碳管是作為成長二氧化釕與氧化鋅奈米結構的附著支架。二氧化釕、氧化鋅奈米結構成長於奈米碳管束與原始的奈米碳管束的電子場發射效應皆會被測量。研究結果顯示針狀的二氧化釕與錐狀的氧化鋅奈米結構皆會增強奈米碳管的電子場發射特性,因為此兩種金屬氧化物奈米結構成長於奈米碳管表面可以增加其電子場放射源,而每個針形狀的二氧化釕與錐形狀的氧化鋅奈米結構也皆可以作為獨立的場發射源。其結果證實二氧化釕與氧化鋅奈米結構成長於奈米碳管為具有發展潛力的場發射材料。


    The optimal carbon nanotube (CNT) bundle array with a hexagonal arrangement was synthesized using thermal chemical vapor deposition (CVD). To enhance the electron field emission characteristics of the CNTs, needle-like ruthenium dioxide (RuO2) nanostructures were grown onto vertically aligned CNT bundles using metal organic chemical vapor deposition (MOCVD) and tapered zinc oxide (ZnO) nanostructures were grown on vertically aligned CNT bundles using another thermal CVD technique. Transmission electron microscopy (TEM) images showed that the RuO2 and ZnO nanostructures were grown onto the CNT surface uniformly. The CNTs were the principal part and template, with the needle-like RuO2 and tapered ZnO nanostructures grown outwardly from the CNTs. The electron field emissions of pristine CNT bundles, RuO2-coated CNT bundles, and ZnO-coated CNTs were measured. The results showed that both the RuO2 and ZnO nanostructures grown onto the CNTs could improve the electron field emission characteristics. This was because the nanostructures of both the metal oxides grown onto the CNT surface could increase the emission sites, and each needle-like RuO2 or tapered ZnO nanostructure could be regarded as an individual field emission site. These results demonstrated that ZnO-coated CNTs and RuO2-coated CNTs are promising field emitter materials.

    Abstract (in Chinese) -------------------------------------------------------------------- I Abstract (in English) --------------------------------------------------------------------- II Acknowledgement (in Chinese) -------------------------------------------------------- III Contents ------------------------------------------------------------------------------------ IV Figure captions ---------------------------------------------------------------------------- VI Table list ------------------------------------------------------------------------------------ X Chapter 1 Introduction ------------------------------------------------------------------ 1 1.1 Discovery of carbon nanotubes ---------------------------------------- 1 1.2 Structure and properties of carbon nanotubes ------------------------ 3 1.2.1 Structure of carbon nanotubes ------------------------------------ 3 1.2.2 Properties of carbon nanotubes ----------------------------------- 4 1.3 Field emission application of carbon nanotubes --------------------- 5 1.4 Theory and applications of field emission ---------------------------- 7 1.4.1 Field emission theory ---------------------------------------------- 7 1.4.2 Field emission applications ---------------------------------------- 9 1.5 Motivation ---------------------------------------------------------------- 12 1.5.1 Optimal arrangement ----------------------------------------------- 12 1.5.2 Metal oxide-coated CNTs ------------------------------------------ 14 Chapter 2 Experimental methods ----------------------------------------------------- 16 2.1 Experimental procedure ------------------------------------------------- 16 2.2 Manufacturing procedure ----------------------------------------------- 17 2.2.1 Substrate preparation ----------------------------------------------- 17 2.2.2 Photolithography ---------------------------------------------------- 17 2.2.3 E-beam evaporation ------------------------------------------------ 19 2.2.4 The growth of the carbon nanotubes ----------------------------- 20 2.2.5 The growth of needle-like RuO2 ---------------------------------- 22 2.2.6 The growth of tapered ZnO ---------------------------------------- 24 2.3 Analysis of characteristics ---------------------------------------------- 26 2.3.1 Scanning electron microscopy ------------------------------------ 26 2.3.2 High resolution transmission electron microscopy ------------- 27 2.3.3 Raman spectroscopy ------------------------------------------------ 27 2.3.4 X-ray diffraction ---------------------------------------------------- 27 2.3.5 Photoluminescence ------------------------------------------------- 27 2.3.6 Field emission measurement -------------------------------------- 28 Chapter 3 Results and discussion ----------------------------------------------------- 31 3.1 RuO2-coated carbon nanotube bundles ------------------------------- 31 3.2 ZnO-coated carbon nanotube bundles --------------------------------- 39 3.3 Comparison with characteristics --------------------------------------- 52 Chapter 4 Conclusions ------------------------------------------------------------------- 53 References ---------------------------------------------------------------------------------- 55 Resume -------------------------------------------------------------------------------------- 62 Publication list ----------------------------------------------------------------------------- 63

    [1] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, Nov. 1991.
    [2] T. W. Ebbesen and P. M. Ajayan, “Large-scale synthesis of carbon nanotubes,” Nature, vol. 358, pp. 220-222, July 1992.
    [3] S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603-605, June 1993.
    [4] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and, R. Beyers, “Cobalt catalysed growth of carbon nanotubes with single-atomic-layer walls,” Nature, vol. 363, pp. 605-607, June 1993.
    [5] J. W. Mintmire and C. T. White, “Electronic and structural properties of carbon nanotubes,” Carbon, vol. 33, no. 7, pp. 893-902, Feb. 1995.
    [6] G. Arabale, D. Wagh, M. Kulkarni, I. S. Mulla, S. P. Vernekar, K. Vijayamohanan, and A. M. Rao, “Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide,” Chem. Phys. Lett., vol. 376, pp. 207-213, July 2003.
    [7] K. Oura, M. Katayama, S.-I. Honda, K.-Y. Lee, N. Hayashi, T. Hirao, K. Endo, M. Kimoto, K. Nishmura, and K. Nishio, “Direct synthesis of carbon nanotubes on Ti-coated metal substrates and its application to electrochemical double layer capacitors,” Jpn. J. Appl. Phys., vol. 42, pp. L 1167–L 1170, Oct. 2003.
    [8] J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, Anyuan Cao, and D.Wu, “Double-Walled Carbon Nanotube Solar Cells,” Nano Lett., vol. 7, no. 8, pp. 2317-2321, May 2007.
    [9] A. G. Rinzler, J. H. Hafner, P. Nikolaev, P. Nordlander, D. T. Colbert, R. E. Smalley, L. Lou, S. G. Kim, and D. Tománek, “Unraveling nanotubes: Field emission from an atomic wire,” Science, vol. 269, no. 5230, pp. 1550-1553, Sep. 1995.
    [10] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, and A. M. Cassell, “Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, vol. 283, no. 5401, pp. 512-514, Jan. 1999.
    [11] H. Huang, C. H. Liu, Y. Wu, and S. Fan, “Aligned carbon nanotube composite films for thermal management,” Adv. Mater., vol. 17, pp. 1652-1656, July 2005.
    [12] G. S. Choi, K. H. Son, and D. J. Kim, “Fabrication of high performance carbon nanotube field emitters,” Microelectron. Eng., vol. 66, pp. 206-212, May 2003.
    [13] P. R. Somani, S. P. Somani, S.P. Lau, E. Flahaut, M. Tanemura, and M. Umeno, “Field electron emission of double walled carbon nanotube film prepared by drop casting method,” Solid State Electron., vol. 51, pp. 788-792, Apr. 2007.
    [14] Y. Qin, M. Hu, H. Li, Z. Zhang, and Q. Zou, “Preparation and field emission properties of carbon nanotubes cold cathode using melting Ag nano-particles as binder,” Appl. Surf. Sci., vol. 253, pp. 4021-3792, Feb. 2008.
    [15] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett., vol. 75, pp. 3129-3131, Sep. 1999.
    [16] R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London A, vol. 119, no. 781, pp. 173-181, May 1928.
    [17] H.-B. Lian, K.-Y. Lee, K.-Y. Chen, and Y.-S. Huang, “Growth of needle-like RuO2 nanocrystals on carbon nanotubes and their field emission characteristics,” Diamond Relat. Mater., (In press).
    [18] R. B. Sharma, D. J. Late, D. S. Joag, A. Govindaraj, and C. N. R. Rao, “Field emission properties of boron and nitrogen doped carbon nanotubes,” Chem. Phys. Lett., vol. 428, pp. 102-108, Jul. 2006.
    [19] Y.-H. Lai, H.-B. Lian, and K.-Y. Lee, “Field emission of vertically aligned carbon nanotubes with various content of nitrogen,” Diamond Relat. Mater., (In press).
    [20] J. Jiang, J. Zhang, T. Feng, B. Jiang, Y. Wang, F. Zhang, L. Dai, X. Wang, X. Liu, and S. Zou, “Improved emission stability of HfC-coated carbon nanotubes field emitters,” Solid State Commun., vol. 135, pp. 390-393, Aug. 2005.
    [21] F. Arai, P. Liu, L. Dong, T. Fukuda, T. Noguchi, and K. Tatenuma, “Pure metal deposit using multi-walled carbon nanotubes decorated with ruthenium dioxide super-nanoparticles,” Proc. of 2004 4th IEEE Conference on Nanotechnology, pp. 196-198, June 2004.
    [22] K.-C. Chen, C.-F. Chen, J.-H. Lee, T.-L. Wu, C.-L. Hwang, N. H. Tai, M.-C. Hsiao, “Low-temperature CVD growth of carbon nanotubes for field emission application,” Diamond Relat. Mater., vol. 16, pp. 566-569, Mar. 2007.
    [23] W. I. Milne, K. B. K. Teo, E. Minoux, O. Groening, L. Gangloff, L. Hudanski, J.-P. Schnell, D. Dieumegard, F. Peauger, I. Y. Y. Bu, M. S. Bell, P. Legagneux, G. Hasko, and G. A. J. Amaratunga, “Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers,” J. Vac. Sci. Technol. B, vol. 24, no. 1, pp. 345-348, Jan. 2006.
    [24] N. L. Rupesinghe, M. Chhowalla, K. B. K. Teo, and G. A. J. Amaratunga, “Field emission vacuum power switch using vertically aligned carbon nanotubes,” J. Vac. Sci. Technol. B, vol. 21, no. 1, pp. 338-343, Feb. 2003.
    [25] W. Knapp and D. Schleußner, “Special features of electron sources with CNT field emitter and micro grid,” Appl. Surf. Sci., vol. 251, pp. 164-169, May 2005.
    [26] Y. Saito, S. Uemura, and K. Hamaguchi, “Cathode ray tube lighting elements with carbon nanotube field emitters,” Jpn. J. Appl. Phys., vol.37, pp. L346-L348, Mar. 1998.
    [27] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J.-M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotube films,” Appl. Phys. Lett., vol. 76, pp. 2071-2073, Apr. 2000.
    [28] O. Gröning, O. M. Küttel, Ch. Emmenegger, P. Gröning, and L. Schlapbach, “Field emission properties of carbon nanotubes,” Vacuum, vol. 18, pp. 665-678, May 2000.
    [29] S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, D. Z. Wang, and Z. F. Ren, “Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties,” Appl. Phys. Lett., vol. 82, pp. 3520-3522, May 2003.
    [30] X.-Q. Wang, Y.-B. Xu, H.-L. Ge, and M. Wang, “Optimization for field emission from carbon nanotubes array in hexagon,” Diamond Relat. Mater., vol. 15, pp. 1565-1569, Feb. 2006.
    [31] S. Fujii, S. Honda, H. Machida, H. Kawai, K. Ishida, M. Katayama, H. Furuta, T. Hirao, and K. Oura, “Efficient field emission from an individual aligned carbon nanotube bundle enhanced by edge effect,” Appl. Phys. Lett., vol. 90, pp. 153108-153110, Apr. 2007.
    [32] T.-W. Weng, Y.-H. Lai, and K.-Y. Lee, “Area effect of patterned carbon nanotube bundle on field electron emission characteristics,” Appl. Surf. Sci., vol. 254, pp. 7755-7758, Feb. 2008.
    [33] L. Pan, Y. Konishi, H. Tanaka, S. Chakrabarti, S. Hokushin, S. Akita, and Y. Nakayama, “Effect of MgO coating on field emission of a stand-alone carbon nanotube,” J. Vac. Sci. Technol. B, vol. 25, no. 5, pp. 1581-1583, Oct. 2007.
    [34] S. Yu, W. Yi, T. Jeong, W. S. Kim, J. Lee, J. Heo, C. S. Lee, J.-B. Yoo, Y. H. Lee, and J. M. Kim, “Field emission energy distribution of MgO-coated MWCNTs,” Physica B, vol. 323, pp. 177-179, Apr. 2002.
    [35] H. Liu, T. Noguchi, and S. Kato, “ Influence of RuO2 nanoparticles on electron emission from carbon nanotubes” J. Vac. Sci. Technol. B, vol. 25, no. 6, pp. 1814-1818, Dec.2007.
    [36] M. Tomkiewicz, Y. S. Huang, and F. H. Pollak, “The potential of zero charge of oriented single-crystal RuO2 in aqueous electrolytes,” J. Electrochem., vol. 130, no. 7, pp. 1514-1518, July 1983.
    [37] R.-S. Chen, Y.-S. Huang, Y.-L. Chen, and Y. Chi, “Preparation and characterization of RuO2 thin films from Ru(CO)2(tmhd)2 by metalorganic chemical vapor deposition,” Thin Solid Films, vol. 413, pp. 85-91 June 2002.
    [38] J. H. Park, J. M. Ko, and O. O. Park, “Carbon nanotube/RuO2 nanocomposite electrodes for supercapacitors,” J. Electrochem. Soc., vol. 150, no. 7, pp. A864-A867, May 2003.
    [39] C. S. Hsieh, G. Wang, D. S. Tsai, R. S. Chen and Y. S. Huang, “Field emission characteristics of ruthenium dioxide nanorods,” Nanotechnology, vol. 16, no. 9, pp. 1885-1891, Sep. 2005.
    [40] T. Noguchi, H. Muto, K. Tatenuma, P. Liu, F. Arai, T. Fukuda, Y. Saito, E. Yashima, and S. Kato, “Ultrahigh electron emissive carbon nanotubes impregnated with subnano RuO2 clusters,” Proc. of 2005 5th IEEE Conference on Nanotechnology, vol. 2, pp. 669-672, July 2005.
    [41] J. Y. Pan, C. C. Zhu, and Y. L. Gao, “Enhanced field emission characteristics of zinc oxide mixed carbon nano-tubes films,” Appl. Surf. Sci., vol. 254, pp. 3787-3792, Apr. 2008.
    [42] C.-S. Huang, C.-Y. Yeh, Y.-H. Chang, Y.-M. Hsieh, C.-Y. Ku, and Q.-T. Lai, “Field emission properties of CNT-ZnO composite materials,” Diamond Relat. Mater., (In press).
    [43] X. Yan, B.-K. Tay, and P. Miele, “Field emission from ordered carbon nanotube-ZnO heterojunction arrays,” Carbon, vol. 46, pp. 753-758, Apr. 2008.
    [44] K. Yu, Y. S. Zhang, F. Xu, Q. Li, Z. Q. Zhu, and Q. Wan, “Significant improvement of field emission by depositing zinc oxide nanostructures on screen-printed carbon nanotube films,” Appl. Phys. Lett., vol. 88, pp. 153123-1-153123-3, Apr. 2006.
    [45] Y.-S. Fran and T.-Y. Tseng, “Preparation of aluminum film on phosphor screen for field emission display,” Mater. Chem. Phys., vol. 61, pp. 166-168. May 1999.
    [46] C. Ducati, D. H. Dawson, J. R. Saffell, and P. A. Midgley, “Ruthenium-coated ruthenium oxide nanorods”, Appl. Phys. Lett., vol. 85, no. 22, pp. 5385-5387, Nov. 2004.
    [47] C. C. Chen, R. S. Chen, T. Y. Tsai, Y. S. Huang, D. S. Tsai, and K. K. Tiong, “The growth and characterization of well aligned RuO¬2 nanorods on sapphire substrates,” J. Phys.: Condens. Matter, vol. 16, pp. 8475-8484, Nov. 2004.
    [48] W. S. Bacsa, D. Ugarte, A. Châtelain, and W. A. de Heer, “High-resolution electron microscopy and inelastic light scattering of purified multishelled carbon nanotubes,” Phys. Rev. B, vol. 50, no. 20, pp. 15473-15476, Nov. 1994.
    [49] A. Korotcov, H. P. Hsu, Y. S. Huang, P. C. Liao, D. S. Tsai, and K. K. Tiong, “Deposition and characterization of 1D RuO2 nanocrystals by reactive sputtering” J. Alloys Compd., vol. 442, pp. 310-312, Jan. 2007.
    [50] P. Liu, Q. Sun, F. Zhu, K. Jiang, L. Liu, Q. Li, and S. Fan, “Measuring the work function of carbon nanotubes with thermionic method,” Nano Lett., vol. 8, pp. 647-651, Nov. 2008.
    [51] J. K. Jian, C. Wang, Z. H. Zhang, X. L. Chen, L. H. Xu, and T. M. Wang, “Necktie-like ZnO nanobelts grown by a self-catalytic VLS process,” Mater. Lett., vol. 60, pp. 3809-3812, Dec. 2006.
    [52] V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. Xiu, and J. Liu, “Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals,” Phys. Rev. B, vol. 73, pp. 165317-1-165317-9, Apr. 2006.
    [53] Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, and Z. Zhu, “Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization,” J. Appl. Phys., vol. 84, no. 7, pp. 3912-3918, Oct. 1998.
    [54] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt, “Mechanisms behind green photoluminescence in ZnO phosphor powders,” J. Appl. Phys., vol. 79, no. 10, pp. 7983-7990, May 1996.
    [55] H. Q. Wu, X. W. Wei, M. W. Shao, and J. S. Gu, “Synthesis of zinc oxide nanorods using carbon nanotubes as templates,” J. Crystal Growth, vol. 265, pp. 184-189, Jan. 2004.
    [56] L. Jiang and L. Gao, “Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity,” Mater. Chem. Phys., vol. 91, pp. 313-316, June 2005.
    [57] S. H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett., vol. 85, no. 8 pp. 1407-1409, Aug. 2004.

    無法下載圖示 全文公開日期 2014/01/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE