簡易檢索 / 詳目顯示

研究生: 張晏維
Yen-Wei Chang
論文名稱: 金屬玻璃與無鉛銲料界面反應之研究
The Investigation of Interfacial Reactions between Bulk Metallic Glass and Lead-free Solders
指導教授: 顏怡文
Yee-wen Yen
口試委員: 朱瑾
Jinn Chu
陳志銘
Chih-ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 68
中文關鍵詞: 塊材金屬玻璃無鉛銲料界面反應擴散層
外文關鍵詞: BMG, lead-free solder, Interfacial reaction, diffusion layer
相關次數: 點閱:402下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為提高金屬玻璃於工業之應用,首要克服的問題就是如何將金屬玻璃接合於異質材料。本研究以銅模鑄造法製備Cu-45Zr-5Al-5Ag塊材金屬玻璃。對此塊材金屬玻璃先於表面作噴砂前處理、表面再輔以濺鍍銅與電鍍銅之處理,最後以純錫(Sn)、錫-3.0銀-0.5銅(SAC305)兩種銲料作為接合材料與銅基材進行接合。研究結果發現,兩種銲料在接合界面皆可觀察到Cu6Sn5與Cu3Sn相之生成。在純錫銲料中,會有微小孔洞的生成,並且隨著錫原子持續擴散,逐漸在純錫銲料與Cu6Sn5相間生成Kirkendall孔洞。而在錫-3.0銀-0.5銅銲料中,可以觀察到Ag3Sn相之生成,因為Ag3Sn相的生成填補銲料因擴散而生成的孔洞,且Ag3Sn相會隨著時效時間增長而粗大化。此外,在Cu-45Zr-5Al-5Ag塊材金屬玻璃與鍍銅層間可觀察到一擴散層,其主要組成為ZrO2。且該擴散層之厚度隨時效時間增長而增厚。


Bulk metallic glass (BMG) has different mechanical, electrical, magnetic, chemical and physical properties from the general polycrystalline alloy because the internal arrangement of atoms is random. Thus, BMG has well mechanical strength, high hardness, wear resistance, corrosion resistance, and good surface smoothness. Based on these features, BMG has a very promising future in industry. However, for the application of BMG in industrial production, the main problem is how to overcome the joining with other materials. The present study focuses on the soldering processing, with low operating temperature to avoid exceeding the recrystallization temperature. Using lead-free solder and heat press treatment, this study developed a feasible joining process between BMG and copper.
In this study, a copper mold casting method was utilized to prepare Cu45Zr45Al5Ag5 BMG. The BMG surface was applied surface finish and pre-plated copper (5 m) as a wetting layer. The lead-free solder layer was used as a joining material. The reaction temperature was set between the glass transition temperature (Tg) of BMG and the melting point of the solder. After the reflowing and aging process, the joint sample was examined by SEM to observe the interface morphology; the composition was utilized EDS and EPMA to observe; XRD and XPS was used to determine the phase in diffusion layer. TEM was utilized to observe the micro-structure of the joints. It was found that Cu-Zr based BMG can be joined with Cu substrate successfully after the surface finish and plated Cu on the BMG surface. And between the BMG and plated Cu, a diffusion layer was observed and the thickness was increased with longer aging time, which belongs to diffusion controlled of the interfacial reaction. The main component of the diffusion layer are ZrO2 and Cu-rich region. Because of the higher formation rate of ZrO2, the Cu-rich region was peeled and dispersed in ZrO2 phase.

目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 前言 1 第二章 文獻回顧 3 2.1 塊材金屬玻璃之概述與應用 3 2.1.1 塊材金屬玻璃概述 3 2.1.2 塊材金屬玻璃之種類 5 2.1.3 塊材金屬玻璃之應用 5 2.2 塊材金屬玻璃之形成條件與製作方式 7 2.2.1 實驗歸納法則 7 2.2.2 熱力學理論 8 2.2.3 玻璃轉移溫度 (glass transition temperature, Tg) 9 2.2.4 γ值 10 2.2.5 金屬玻璃的製作方法 11 2.3 塊材金屬玻璃之接合工法 12 2.3.1 摩擦攪拌銲接 (friction stir welding) 12 2.3.2 紅外線加熱硬銲 (infrared brazing) 15 2.3.3 電子束銲接(E-beam welding) 16 2.3.4 超音波軟銲法(ultrasonic soldering) 17 2.4 無鉛銲料 19 2.5 界面反應動力學 20 2.5.1 界面反應理論 20 2.5.2 擴散理論 23 第三章 實驗方法 25 3.1 合金基材之製備 25 3.2 塊材金屬玻璃製作-銅模鑄造法 26 3.3 金屬玻璃表面處理 27 3.3.1 表面以噴砂處理去除金屬玻璃緻密氧化層 27 3.3.2 表面以濺鍍銅(CuSP.)及電鍍銅(CuE.P.)改善金屬玻璃潤濕性 27 3.4 液/固界面接合反應測試 30 3.5 分析程序 32 3.5.1金屬玻璃之金相分析 32 3.5.2 金屬玻璃之X-ray繞射分析 33 3.5.3 金屬玻璃之熱分析 33 3.5.4 金屬玻璃與無鉛銲料接合之界面分析 33 第四章 結果與討論 36 4.1金屬玻璃之分析 36 4.2金屬玻璃與銅基材之接合試驗 40 4.3 Cu-45Zr-5Al-5Ag金屬玻璃與鍍銅間擴散層之分析 49 4.4界面反應動力學 62 第五章 結論 64

[1] J. T. Lue, Journal of Physics and Chemistry of Solids, 62 (2001) 1599-1612.
[2] C. C. Hays, C. P. Kim, W. L. Johnson, Physical Review Letters, 84 (2000) 2901.
[3] M. Chen, A. Inoue, W. Zhang, and T. Sakurai, Physical Review Letters, 96 (2006) 245502.
[4] E. Park, D. Kim, Metals and Materials International, 11 (2005) 19-27.
[5] C. L. Qin, W. Zhang, K. Asami, H. Kimura, X. M. Wang, A. Inoue, Acta Materialia, 54 (2006) 3713-3719.
[6] H. S. Shin, Y. J. Jeong, H. Y. Choi, H. Kato, A. Inoue, Journal of Alloys and Compounds, 434 (2007) 102-105.
[7] A. Inoue, A. Takeuchi, Acta Materialia, 59 (2011) 2243-2267.
[8] B. J. Yang, J. H. Yao, J. Zhang, H. W. Yang, J. Q. Wang, E. Ma, Scripta Materialia, 61 (2009) 423-426.
[9] S. Jana, R. Bhowmick, Y. Kawamura, K. Chattopadhyay, U. Ramamurty, Intermetallics, 12 (2004) 1097-1102.
[10] M. Telford, Materials Today, 7 (2004) 36-43.
[11] A. Inoue, N. Nishiyama, Mrs Bulletin, 32 (2007) 651-658.
[12] J. K. Lee, H. J. Kim, T. S. Kim, S. Y. Shin, Y. C. Kim, J. C. Bae, Journal of Materials Processing Technology, 187 (2007) 801-804.
[13] 棚次悠介, 金屬玻璃薄膜應用於醫用針頭之性質提升研究, 國立臺灣科技大學材料科學與工程所碩士論文, 民國104年.
[14] A. Takeuchi, A. Inoue, Materials Transactions, 46 (2005) 2817-2829.
[15] 惠希東, 陳國良, 塊體非晶質合金, 化學工業出版社, (2007) 40.
[16] Z. P. Lu, C. T. Liu, Physical Review Letters, 91 (2003) 115505.
[17] Mc. J. Weinberg, Non-Crystalline Solids 167 (1994) 81-88.
[18] S. Joseph Poon, Gary J. Shiflet, F. Q. Guo, V. Ponnambalam, Journal of Non-Crystalline Solids, 317 (2003) 1-9.
[19] J. Schroers, Q. Pham, A. Desai, Journal of Microelectromechanical Systems, 16 (2007) 240-247.
[20] H. Men, D. Kim, Journal of Materials Research, 18 (2003) 1502-1504.
[21] H. J. Kim , K. M. Lim, B. G. Seong, C. G. Park, Journal of Materials Science, 36 (2001) 49-54.
[22] J. Hosko, I. Janotova, P. Svec, D. Janickovic, G. Vlasak, E. Illekova, I. Matko, P. Svec Sr., Journal of Non-Crystalline Solids, 358 (2012) 1545-1549.
[23] S. C. Juang, Y. S. Tarng, Journal of Materials Processing Technology, 122 (2002) 33-37.
[24] V. Gunaraj, N. Murugan, Journal of Materials Processing Technology, 88 (1999) 266-275.
[25] S. Aslanlar, Materials and Design, 27 (2006) 125-131.
[26] H. Kreye, Welding Journal, 56 (1977) 154-158.
[27] E. V. Locke, E. D. Hoag, R. A. Hella, IEEE Journal of Quantum Electronics, 8 (1972) 132-135.
[28] W. Hanson, K. Ironside, J. Fernie, Acta Materialia, 48 (2000) 4673-4676.
[29] R. K. Wassink, Electrochemical Publications (1984)
[30] K. H. Tseng, G. Kohn, Y. Greenberg, I. Makover and A. Munitz, Laser-Assisted Friction Stir Welding, American Welding Society (2002)
[31] J. G. Lee, Y. H. Choi, J. K. Lee, G. J. Lee, M. K. Lee, C. K. Rhee, Intermetallics, 18 (2010) 70-73.
[32] Mikell P. Groover, Fundamentals of Modern Manufacturing, John Wiley & Sons (2010)
[33] M. M. Schwartz, Brazing, ASM International, Materials Park, Ohio, USA (1987) 116-125.
[34] P. Roberts, Industrial Brazing Practice, CRC Press (2013).
[35] J. Kim, Y. Kawamura, Journal of Materials Processing Technology, 207 (2008) 112-117.
[36] S. Tamura , Y. Tsunekawa, M. Okumiya, M. Hatakeyama, Journal of Materials Processing Technology, 206 (2008) 322-327.
[37] C. L. Tsao, S. W. Chen, Journal of Materials Science, 30 (1995) 5215-5222.
[38] 黃育智, 不同尺寸電子銲點中之相生成與相變化, 清華大學化學工程所博士論文, 民國99年.
[39] W. Zhang, F. Jia, Q. S. Zhang, A. Inoue, Materials Science and Engineering, 459 (2007) 330-336.
[40] 李澄傑, 微接點中因界面反應引發之體積收縮行為, 國立臺灣大學材料科學與工程所博士論文, 民國103年.
[41] T. Lyman, Metals Handbook 8th edn., Vol. 8, Metallography, Structures and Phase Diagrams , ASM International, Metal Park, Ohio, USA (1973) 269.
[42] D. R. Frear, S. N. Burchett, H. S. Morgan, J. H. Lau, The Mechanics of Solder Alloy Interconnects, Springer, New York, USA (1994) 76.
[43] M. Oh, Doctoral Dissertation, Leihigh University, USA (1994).
[44] M. Onishi, H. Fujibuchi, Transactions of the Japan Institute of Metals, 16 (1975) 539.
[45] H. Y. Chuang, J. J. Yu, M. S. Kuo, H. M. Tong, C. R. Kao, Scripta Materialia, 66 (2012) 171-174.
[46] 余人睿, 三維積體電路微接點中介金屬作為結構材之應用, 國立臺灣大學材料科學與工程所博士論文, 民國105年.
[47] W. Kai, I. F. Ren, P. C. Kao, R. F. Wang, C. P. Chuang, Matthew W. Freels, Peter K. Liaw, Advanced Engineering Materials, 11 (2009) 380-386.
[48] J. Moulder, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics (1995).
[49] T. L. Barr, The Journal of Physical Chemistry, 82 (1978) 1801-1810.
[50] C. C. Fulton, T. E. Cook Jr., G. Lucovsky, R. J. Nemanich, Journal of Applied Physics, 96 (2004) 2665-2673.
[51] C. Hinnen, D. Imbert, J. M. Siffre, P. Marcus, Applied Surface Science, 78 (1994) 219-231.
[52] P. J. Cumpson, M. P. Seah, Surface and Interface Analysis, 25 (1997) 430-446.
[53] C. D. Wagner, Journal of Vacuum Science & Technology, 15 (1978) 518-523.
[54] D. Briggs, M. P. Seah, Practical surface analysis by Auger and X-ray photoelectron spectroscopy, John Wiley & Sons, New Jersey, USA (1983).
[55] S. Maroie, G. Haemers, J. Verbist, Applications of Surface Science, 17 (1984) 463-467.
[56] J. Agrell, M. Boutonnet, José L. G. Fierro, Applied Catalysis A: General, 253 (2003) 201-211.

QR CODE