簡易檢索 / 詳目顯示

研究生: 吳齊修
Qi-Xiu Wu
論文名稱: 應用於生醫系統的儀表放大器與類比基頻電路設計
Instrumentation Amplifier and Analog Baseband Circuit for Biomedical System
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 姚嘉瑜
Chia-Yu Yao
郭重顯
Chung-Hsien Kuo
邱弘緯
Hung-Wei Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 129
中文關鍵詞: 儀表放大器低雜訊低直流偏移交流耦合自動歸零截切生醫植入式應用
外文關鍵詞: Instrumentation amplifier, low noise, low dc-offset, ac-couple, auto-zero, chopper, implantable biomedical applications
相關次數: 點閱:404下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代生醫積體電路設計著重於低功率、低雜訊、低直流偏移。在本研究中使用了TSMC 0.18um製程設計出兩個儀表放大器,第一個儀表放大器是加入了交流耦合電容將主要的直流偏移降低,並且加入了增益可調的功能。第一個儀表放大器之電路增益最高為42.3 dB,最低增益為19.3 dB,並且具備60 dB的共模拒斥比與電源供應拒斥比,其功率消耗則是1.3 mW。由於加入了交流耦合電容,所以該儀表放大器的輸入等效直流偏移只有4 uV。
    第二個儀表放大器則分別加入了自動歸零與截切技術達成低雜訊與低直流偏移的目標。自動歸零技巧通常被用來消除電路的直流偏移,同時可以改善運算放大器之間的不匹配。截切技巧則通常被用來消除低頻的閃爍雜訊。使用自動歸零技巧的自動歸零儀表放大器其電路增益為40.1 dB,電路頻寬為68.8 kHz,輸入參考方均根雜訊電壓從直流積分至轉折頻率為31.8 uVrms,等效直流偏移為20 uV,消耗功率為1.3mW。使用截切技巧的儀表放大器其電路增益為40.1 dB,電路頻寬為69.1 kHz,輸入參考方均根雜訊電壓為86 uVrms,等效直流偏移為40 uV,消耗功率為1.3mW。
    除此之外,我們將生醫積體電路常用的偽電阻架構與交流耦合電容應用於低功率無線收發機的基頻電路。此架構的好處在於可以增加穩定度並且降低功率消耗。基頻電路增益為39.2 dB至76.5 dB,功率消耗為100 uW。此低功率收發機的靈敏度為-73 dBm(誤碼率為10-3)。最後則是針對運算放大器的設計考量與生醫植入式應用的無線傳輸系統做較深入的探討。


    The design of modern biomedical-integrated circuit emphasizes low power, low noise and low dc-offset. This research shows two instrumentation amplifiers(IA) that were fabricated TSMC 0.18um CMOS process. The first instrumentation amplifier uses ac-couple capacitors to reduce dc-offset, and has variable gain control. The highest gain of the first instrumentation amplifier is 42.3 dB, the lowest gain is 19.3 dB.This IA works with 60dB of common mode rejection ratio(CMRR) and power supply rejection ratio(PSRR), and the power consumption is 1.3 mW. Because of ac-couple capacitors, the equivalent input dc-offset of the instrumentation amplifier is only 4 uV.
    The second instrumentation amplifier adopt auto-zero technique and chopper tech¬nique to achieve low noise and low dc-offset. Auto-zero technique is usually used to eliminate the dc-offset of circuit, while improving the mismatch between the op amps. Chopper technique is used to eliminate low-frequency flicker noise. The auto-zero instrumentation amplifier features a gain of 40.1 dB with 68.8 kHz band-width. The input-refer root-mean-square noise that integrated from DC to corner frequency is 31.8 uVrms. The equivalent input dc-offset is 20 uV, and the total power consumption is 1.3 mW. The chopper instrumentation amplifier features 40.1 dB with 69.1 kHz bandwidth. The input-refer root-mean-square noise is 86 uV. The equivalent input dc-offset is 40 uV, and the total power consumption is 1.3 mW.
    In addition, we use pseudo-resistance structure and ac-coupling capacitors that biomedical integrated circuits commonly used as a baseband circuit of low-power wireless transceiver. The benefits of those techniques are to increase stability and reduce power consumption. The gain range of baseband circuit is from 39.2 dB to 76.5 dB, and the power consumption is 100 uW. This low-power transceiver achieves -73 dBm of sensitivity (10-3 of BER). At last, we do more in-depth discussion for the wireless transmission system of implantable biomedical applications and considera-tions of op-amp design.

    摘要…………………………………………………………………………………….i Abstract……………………………………………………………………………....iii 致謝…………………………………………………………………………………..v 目錄………………………………………………………………………………vii 圖目錄………………………………………………………………………………...xi 表目錄………………………………………………………………………….xvii 第一章 緒論………………………………………………………………………....1 1.1 簡介…………………………………………………………………………1 1.2 章節簡介……………………………………………………………………3 第二章 低直流偏移之增益可調儀表放大器………………………………….......5 2.1 簡介…………………………………………………………………………5 2.2 直流偏移與雜訊……………………………………………………………6 2.2.1 直流偏移…………………………………………………………6 2.2.2 元件雜訊…………………………………………………………7 2.2.3 電路雜訊…………………………………………………………8 2.3 電路架構…………………………………………………………………..11 2.3.1 儀表放大器……………………………………………………..11 2.3.2 低直流偏移之增益可調儀表放大器…………………………..12 2.3.2.1 增益可調……………………………………………..12 2.3.2.2 交流耦合……………………………………………..14 2.3.2.3 寬擺幅電流鏡偏壓電路……………………………..15 2.3.2.4 折疊-疊接運算放大器……………………………….17 2.4 模擬結果…………………………………………………………………..21 2.4.1 寬擺幅電流鏡偏壓電路模擬…………………………………..21 2.4.2 運算放大器模擬結果………………………………………......22 2.4.3 儀表放大器模擬……………………………………………......29 2.5 量測結果……………………………………………………………....…..33 2.5.1 量測環境……………………………………………………......33 2.5.2 儀表放大器量測…………………………………………....…..37 2.5.3 ECG心電訊號量測……………………………………….……44 2.6 結論………………………………………………………………….…….44 第三章 低雜訊、低偏移量之儀表放大器…………………………………...…..47 3.1 簡介………………………………………………….…………………….47 3.2 直流偏移消除與雜訊降低…………………………………………….….48 3.2.1 修整法……………………………………………………….….48 3.2.2 自動歸零技術…………………………………………….…….49 3.2.3 截切安定技巧……………………………………………….….53 3.2.4 自動歸零與截切安定技巧………………………………….….56 3.3 電路架構………………………………………………………………....58 3.3.1 自動歸零技術……………………………………………….….58 3.3.1.1 開關模型………………………………………….….58 3.3.1.2 時脈產生電路…………………………………….….60 3.3.1.3 自動歸零儀表放大器…………………………….….61 3.3.2 截切安定儀表放大器……………………………………….….63 3.3.2.1 截切調變電路…………………………………….….63 3.3.2.2 截切安定儀表放大器…………………………….….63 3.3.2.3 截切安定運算放大器…………………………….….65 3.4 模擬結果……………………………………………………………….….67 3.4.1 自動歸零儀表放大器……………………………………….….67 3.4.2 截切安定儀表放大器……………………………………….….69 3.5 量測結果…………………………………………………………….....….71 3.5.1 量測環境………………………………………………….....….71 3.5.2 自動歸零儀表放大器…………………………………….....….72 3.5.3 截切安定儀表放大器…………………………………….....….75 3.6 結論………………………………………………………….…...…….….77 第四章 無線接收機之基頻電路設計………………………………………….....81 4.1 簡介………………………………………………………………....……..81 4.2 基頻電路架構……………………………………………………...….…..82 4.2.1 偽電阻…………………………………………………….….....83 4.2.2 單級運算轉導放大器……………………………………..…....83 4.2.3 反向放大級………………………………………………..…....84 4.2.4 非反向放大級………………………………………………......85 4.3 電路模擬…………………………………………………………….…….86 4.4 量測結果………………………………………………………………......90 4.4.1 量測環境………………………………………………….….....90 4.4.2 中頻放大器量測……………………………………………......91 4.5 無線生醫監控系統…………………………………………………….….92 4.5.1 低功率無線收發機………………………………………….….94 4.5.2 有線傳輸量測…………………………………………….….....95 4.6 結論………………………………………………………………….…102 第五章 運算放大器之設計考量與無線傳輸系統之探討………………………105 5.1 簡介………………………………………………………………….…105 5.2 運算放大器之設計考量……………………………………………....…105 5.2.1 運算放大器之架構考量…………………………….…...…....105 5.2.2 運算放大器之元件設計考量……………………………........106 5.2.3 生醫前端介面電路之運算放大器設計考量………………...111 5.2.4 類比基頻電路之運算放大器設計考量……………………...112 5.3 植入式應用之無線傳輸系統……………………………………….…..112 5.3.1 植入設備之電力來源…………………………………….…..112 5.3.2 射頻無線傳輸系統………………………………......….……113 5.3.3 人體局域網……………………………...……...……….……114 5.3.4 無線人體局域網……………………………...…………....…116 5.4 結論……………………………………………………………….…......118 第六章 總結與未來展望…………………………………………………….…..119 參考文獻…………………………………………………………………….……..121 作者簡介……………………………………………………………………………129

    [1] 許彧斌,” 適用於生醫應用之低雜訊類比前端電路設計,” 國立台灣大學電子所碩士論文, 2007.
    [2] Reid R. Harrison, and Cameron Charles, “ A Low-Power Low-Noise CMOS Amplifier for Neural Recording Applications,” IEEE Journal of Solid-State Circuit, Volume: 38, Issue: 6, pp.958-965, June 2003.
    [3] Chih-Jen Yen, Wen-Yaw Chung, and Mely Chen Chi,” Micro-Power Low-Offset Instrumentation Amplifier IC Design for Biomedical System Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, Volume: 51, Issue: 4, pp.691-699, April 2004.
    [4] Honglei Wu, Yong-Ping Xu,” A Low-Voltage Low-Noise CMOS Instrumenta-tion Amplifier for Portable Medical Monitoring Systems,” The 3rd International IEEE-NEWCAS Conference, pp.295-298, 2005.
    [5] Xiao Yang, Jing Yang, Li-fen Lin, and Chao-dong Ling, ” Low-power Low-noise CMOS Chopper Amplifier,” Anti-Counterfeiting Security and Identification in Communication (ASID), pp.83 – 84, 2010.
    [6] 王永順,” 生物感測器訊號處理之關鍵積體電路方塊設計,” 私立中原大學電子所碩士論文, 2002.
    [7] P. E. Allen and D. R. Holberg ,“ CMOS Analog Circuit Design”, chapter 4-7, Oxford University Press, 2002.
    [8] B. Razavi, “ Design of Analog COMS Integrated Circuit.” Chapter 9, McGraw-Hill, 2001.
    [9] Paul G.A. Jespers,” The gm/ID design methodology, a sizing tool for low-voltage analog CMOS circuits: the semi-empirical and compact model approaches” Springer, 2010.
    [10] Christian C. Enz, Eric A. Vittoz,” Charge-based MOS transistor modeling : the EKV model for low-power and RF IC design,” NJ : John Wiley, 2006
    [11] Christian C. ENZ, Gabor C. Temes, “ Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization,” proceedings of the IEEE, pp.1584-1614, Nov 1996.
    [12] Christian Menolfi and Qiuting Huang, “A Low-Noise CMOS Instrumentation Amplifier for Thermoelectric Infrared Detectors”, IEEE Journal of Solid-State Circuits, Volume: 32 , Issue: 7, pp.968-976, July 1997.
    [13] Anton Bakker, Kevin Thiele, and Johan H. Huijsing,“ A CMOS Nested-Chopper Instrumentation Amplifier with 100-nV Offset”, IEEE Journal of Solid-State Circuits, pp.1877-1883, December 2000.
    [14] Rong Wu, Kofi A. A. Makinwa and Johan H. Huijsing, ” A chopper cur-rent-feedback instrumentation amplifier with a 1mHz 1/ƒ noise corner and an AC-coupled ripple-reduction loop “, IEEE Journal of Solid-State Circuits, Volume: 44, Issue: 12, pp.322–323, December 2009.
    [15] M. A. P. Pertijs, and W. J. Kindt, “ A 140dB CMRR Current Feedback Instrumentation Amplifier Employing Ping-Pong Auto-Zeroing and Chopping,” IEEE International Solid-State Circuits Conference, pp. 324-326, February 2009.
    [16] Takeshi Yoshida, Yoshihiro Masui, Takayuki Mashimo, Mamoru Sasaki and Atsushi Iwata, ” A 1V supply 50nV/√Hz noise PSD CMOS amplifier using noise reduction technique of autozeroing and chopper stabilization,” Symposium on VLSI Circuits Digest of Technical Papers,pp. 118-121, 2005.
    [17] Witte, J.F.; Huijsing, J.H.; Makinwa, K.A.A.” A chopper and auto-zero offset-stabilized CMOS instrumentation amplifier,” 2009 Symposium on VLSI Circuits, pp. 210-211, 2009.
    [18] Tang, A.T.K.”A 3μV offset operational amplifier with 20nV/√Hz input noise PSD at DC employing both chopping and autozeroing,” IEEE International Solid-State Circuits Conference,pp. 386 – 387, 2002.
    [19] Fu Qiang, Xiao Yan, Tan Kai, Liu Xiaowei and Shan Qiang, “Analysis and design of instrumentation amplifier based on chopper technology,“ Laser Physics and Laser Technologies (RCSLPLT) and 2010 Academic Symposium on Optoelec-tronics Technology (ASOT), pp.318–321, 2010.
    [20] P. K. Chan, G. A. Hanasusanto, H. B. Tan and V. K. S. Ong, “ A Micropower CMOS Amplifier for Portable Surface EMG Recording,” IEEE APCCAS 2006, pp.490-493, 2006.
    [21] 蕭仲欽,” 無線生醫系統接收機之基頻電路設計,” 國立台灣科技大學電機所碩士論文, 2012.
    [22] 莊雅蓁,” 無線生醫系統接收機之射頻電路設計,” 國立台灣科技大學電機所碩士論文, 2011.
    [23] 李維剛,” 無線生醫系統之發射機設計,” 國立台灣科技大學電機所碩士論文, 2011.
    [24] Huseyin S. Savci, Ahmet Sula, Zheng Wang, Numan S. Dogan and Ercument Arvas, “MICS Transceivers: Regulatory Standards and Applications,“ IEEE Proceedings SoutheastCon, pp.179–182, 2005.
    [25]Kiaas-Jande Langen and Johan H. Huijsing,“ Compact Low-Voltage Power Efficient Operational Amplifier Cells for VLSI,” IEEE Journal of Solid-State Circuits, Volume: 33, Issue: 10, pp.1482-1496, October 1998.
    [26] Xiaodan Zou, Xiaoyuan Xu, Libin Yao and Yong Lian,” A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip,” IEEE Journal of Solid-State Circuit, Volume: 44, Issue: 4, pp.1067-1077, April 2009.
    [27] Refet Firat Yazicioglu, Patrick Merken, Robert Puers and Chris Van Hoof,” A 60 uW 60nV/ Hz Readout Front-End for Portable Biopotential Acquisition Systems,” IEEE Journal of Solid-State Circuits, Volume: 42, Issue: 5, pp.1100-1110, May 2007.
    [28] Vamsy P. Chodavarapu, Daniil O. Shubin, Rachel M. Bukowski, Albert H. Titus, Alexander N. Cartwright and Frank V. Bright,” CMOS-Based Phase Fluorometric Oxygen Sensor System,” IEEE Transactions on Circuits and Systems I: Regular Papers, Volume: 54, Issue: 1, pp.111-118, January 2007.
    [29] Leonov, V.; Fiorini, P.; Sedky, S.; Torfs, T.; Van Hoof, C.,” Thermoelec-tric MEMS generators as a power supplyfor a body area network,“ The 13th International Conference on Solid-State Sensors, Actuators and Microsys-tems,volume:1, pp.291-294, 2005.
    [30] Darrin J. Young,” Wireless Powering and Data Telemetry for Biomedical Implants,” 31st Annual International Conference of the IEEE EMBS, pp.3221-3224, September 2009.
    [31] Mehdi Kiani and Maysam Ghovanloo,” A Closed Loop Wireless Power Transmission System Using a Commercial RFID Transceiver for Biomedical Applications,” 31st Annual International Conference of the IEEE EMBS, pp.3841-3844, September 2009.
    [32] Jagdish Pandey and Brian P. Otis,“ A Sub-100 W MICS/ISM Band Transmitter Basedon Injection-Locking and Frequency Multiplication,“ IEEE Journal of Solid-State Circuits, Volume: 46, Issue: 5, pp.1049–1058, May 2011.
    [33] Tino Copani, Seungkee Min, Sridhar Shashidharan, Sudipto Chakraborty, Mark Stevens, Sayfe Kiaei and Bertan Bakkaloglu,” A CMOS Low-Power Transceiver With Reconfigurable Antenna Interface for Medical Implant Applications,” IEEE Transactions on Microwave on Microwave Theory and Techniques, Volume: 59, Issue: 5, pp.1369-1378, May 2012.
    [34]Junhua Liu, Chen Li, Long Chen, Yehui Xiao, Jiayi Wang, Huailin Liao and Ru Huang,” An Ultra-Low Power 400MHz OOK Transceiver for Medical Implanted Applications,” 2011 Proceedings of the ESSCIRC (ESSCIRC), pp.175-178, 2011.
    [35] Peter D. Bradley,” An Ultra Low Power, High Performance Medical Implant Communication System (MICS) Transceiver for Implantable Devices,” IEEE Biomedical Circuits and Systems Conference (BioCAS), pp.158-161, 2006.
    [36] Wangren Xu, Zhenying Luo and Sameer Sonkusale,” Fully Digital BPSK Demodulator and Multilevel LSK Back Telemetry for Biomedical Implant Transceivers,” IEEE Transaction on Circuits and Systems—II: Express Briefs, Volume: 56, Number: 9, pp.714–718, September 2009.
    [37] Bohorquez, J.L.; Chandrakasan, A.P.; Dawson, J.L,” A 350uW CMOS MSK Transmitter and 400 uW OOK Super-Regenerative Receiver for Medical Implant Communications,”IEEE Journal of Solid-State Circuit, Volume: 44, Issue: 4, pp.1248-1259, 2009.
    [38] Keisuke Hachisuka, Azusa Nakata, Teruhito Takeda, Yusuke Terauchi, Kenji Shiba, Ken Sasaki, Hiroshi Hosaka and Kiyoshi Itao,” Development and Perfor-mance analysis of an Intra-body Communication Device,” International Conference on Solid State Sensor, Actuator, and Microsystems, volume:2, pp.1722-1725, June 2003.
    [39] Joonsung Bae, Hyunwoo Cho, KiseokSong, Hyungwoo Lee and Hoi-Jun Yoo,” The Signal Transmission Mechanism on the Surface of Human Body for Body Channel Communication,” IEEE Transactions on Microwave on Microwave Theory and Techniques, Volume: 60, Issue: 3, pp.582-593, March 2012.
    [40] Md.Asdaque Hussain and Kyung Sup Kwak,” Positioning in Wireless Body Area Network using GSM,” International Journal of Digital Content Technology and its Applications, volume: 3, number: 3, September 2009.
    [41] E. Monton, J.F. Hernandez, J.M. Blasco, T. Herve, J. Micallef, I. Grech, A. Brincat and V. Traver,” Body area network for wireless patient monitoring,” IET communications, volume 2, Issue: 2, pp.215-222, 2008.
    [42] Namjun Cho, Taehwan Roh, Joonsung Bae and Hoi-Jun Yoo, “A Planar MICS Band Antenna Combined With a Body Channel Communication Electrode for Body Sensor Network,” IEEE Transaction on Microwave Theory and Techniques, Volume: 57, Issue: 10, pp.2515-2522, October 2009.
    [43] Yu-Tso Lin, Yo-Sheng Lin, Chun-Hao Chen, Hsiao-Chin Chen, Yu-Che Yang and Shey-Shi Lu,” A 0.5-V Biomedical System-on-a-Chip for Intrabody Communica-tion System,” IEEE Transactions on Industrial electronics, Volume: 58, Issue: 2, pp.690-699, February 2011.
    [44] Seong-Jun Song, Namjun Cho and Hoi-Jun Yoo,” A 0.2-mW 2-Mb/s Digital Transceiver Based on Wideband Signaling for Human Body Communications,” IEEE Journal of Solid-State Circuits, Volume: 42, Issue: 9, pp.2021–2033, September 2007.
    [45] Hoi-Jun Yoo and Namjun Cho,“ Body Channel Communication for Low Energy BSN/BAN,” IEEE Asia Pacific Conference on Circuits and Systems, IEEE APCCAS, pp.7-11, 2008.
    [46] Seong-Jun Song, Namjun Cho, Sunyoung Kim, Jerald Yoo, Sungdae Choi and Hoi-Jun Yoo,“ A 0.9V 2.6mW Body-Coupled Scalable PHY Transceiver for Body Sensor Applications,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp.366-367, February 2007.
    [47] Namjun Cho, Joonsung Bae, Sunyoung Kim and Hoi-Jun Yoo,” A 10.8mW Body-Channel-Communication/MICS Dual-Band Transceiver for a Unified Body-Sensor-Network Controller,” IEEE International Solid-State Circuits Conference - Digest of Technical Papers, ISSCC 2009, pp.424-425, 2009.
    [48] Jerald Yoo, Long Yan, Seulki Lee, Yongsang Kim, Hyejung Kim, Binhee Kim, Hoi-Jun Yoo,” A 5.2mW Self-Configured Wearable Body Sensor Network Controller and a 12μW Wirelessly Powered Sensor for Continuous Health Monitoring System,” IEEE Journal of Solid-State Circuits, Volume: 45, Issue: 1, pp. 290–291, January 2010
    [49] Seong-Jun Song, Namjun Cho and Hoi-Jun Yoo,” A 0.2-mW 2-Mb/s Digital Transceiver Based on Wideband Signaling for Human Body Communications,” IEEE Journal of Solid-State Circuits, Volume: 42, Issue: 9, pp.2021-2033, September 2007.
    [50] Joonsung Bae, Kiseok Song, Hyungwoo Lee, Hyunwoo Cho, Long Yan and Hoi-Jun Yoo,” A 0.24nJ/b Wireless Body-Area-Network Transceiver with Scalable Double-FSK Modulation,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp.34-36, 2009.

    無法下載圖示 全文公開日期 2017/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE