簡易檢索 / 詳目顯示

研究生: 鄭宇辰
Yu-Chen Cheng
論文名稱: 使用雜訊消除技術的CMOS低雜訊放大器
CMOS Low Noise Amplifiers Using Noise Canceling Technique
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 邱弘緯
Hung-Wei Chiu
姚嘉瑜
Chia-Yu Yao
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 75
中文關鍵詞: 低雜訊放大器雜訊消除技術雙頻帶前饋電路認知無線電Wi-Fi6
外文關鍵詞: low noise amplifier (LNA), noise canceling, concurrent band, feedforward, spectrum sensing system, Wi-Fi 6
相關次數: 點閱:352下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用TSMC 0.18-μm CMOS製程製造針對DTV頻段認知無線電應用並使用雜訊消除技術的400-800 MHz低雜訊放大器。低雜訊放大器使用了前饋雜訊消除技術,從而降低主要級電晶體的雜訊。低雜訊放大器達到最大功率增益17.4 dB在455 MHz以及最小雜訊指數1.35 dB在805 MHz。在1.8 V的電源下,功率消耗為16.81 mW。
    藉由雜訊消除技術,使用TSMC 90nm CMOS技術製造設計了2.4 / 5.2 GHz雙頻帶的低雜訊放大器實現於Wi-Fi 6的應用。2.4/5.2 GHz雙頻帶低雜訊放大級的主要級使用了分裂負載電感強化的技術以及源極退化電感。此低雜訊放大器模擬結果實現了14.56 / 12.3 dB的功率增益和1.9 / 1.98 dB的雜訊指數。在1 V的電源下,功率消耗為18.37 mW。此外,輸入阻抗和所需雜訊消除級增益的理論結果與模擬結果一致。


    A 400-800 MHz LNA using noise canceling technique is designed and implemented for DTV-band cognitive radio applications, and it is fabricated using TSMC 0.18-μm CMOS technology. A feedforward noise canceling technique is applied to the LNA so that the noise of MOSFETs in the primary stage can be reduced. The LNA achieves the maximum power gain of 17.4 dB at 455 MHz and the minimum noise figure of 1.35 dB at 805 MHz. The power consumption is 16.81 mW from the 1.8-V supply.
    With the noise canceling technique, the 2.4/5.2 GHz concurrent band low noise amplifier is designed and implemented for Wi-Fi 6 applications, and it is fabricated using TSMC 90nm CMOS technology. The splitting-load inductive peaking technique and source degeneration are used in the primary stage of the concurrent band LNA. The simulated results of LNA achieve the power gain of 14.56/12.3 dB and the noise figure of 1.9/1.98 dB. The power consumption is 18.37 mW from the 1-V supply. In addition, the theoretical results for input matching and the required gain of noise canceling stage agree with the simulation results.

    摘要 I Abstract II 誌謝 III Table of Contents IV List of Figures VI List of Tables IX Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization of the Thesis 3 Chapter 2 A 400-800 MHz LNA for DTV-band Cognitive Radio Applications 4 2.1 Circuit Design 5 2.1.1 Noise-Canceling Method 5 2.1.2 Gain and Noise 8 2.1.3 Noise summary 9 2.1.4 Circuit Architecture 12 2.1.5 Die photograph 14 2.2 Simulation Result 16 2.2.1 S-parameter 16 2.2.2 Noise Figure 18 2.2.3 Linearity 19 2.2.4 Stability 23 2.3 Measurement Results 24 2.3.1 S-parameter 24 2.3.2 Noise Figure 27 2.3.3 Linearity 28 Chapter 3 A 2.4/5.2 GHz concurrent band low noise amplifier in 90nm CMOS Technology 32 3.1 Circuit Design 33 3.1.1. Primary stage 33 3.1.2. Input matching 36 3.1.3. Theoretical gain requirement 41 3.1.4. Noise summary 43 3.1.5. Circuit Architecture 45 3.1.6. Chip Layout 47 3.2 Simulation result 50 3.2.1. S-parameter 50 3.2.2. Noise Figure 52 3.2.3. Linearity 53 3.2.4. Stability 57 Chapter 4 Conclusion 61 REFERENCE 62

    [1] F. Bruccoleri, E. A. M. Klumperink and B. Nauta, "Wide-band CMOS low-noise amplifier exploiting thermal noise canceling," in IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 275-282, Feb. 2004.
    [2] Y. Yu, Y. Yang and Y. E. Chen, "A Compact Wideband CMOS Low Noise Amplifier With Gain Flatness Enhancement," in IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 502-509, March 2010.
    [3] Q. Li and Y. P. Zhang, "A 1.5-V 2–9.6-GHz Inductorless Low-Noise Amplifier in 0.13-μm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 10, pp. 2015-2023, Oct. 2007.
    [4] C. Liao and S. Liu, "A Broadband Noise-Canceling CMOS LNA for 3.1–10.6-GHz UWB Receivers," in IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 329-339, Feb. 2007.
    [5] K. Chen and S. Liu, "Inductorless Wideband CMOS Low-Noise Amplifiers Using Noise-Canceling Technique," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 2, pp. 305-314, Feb. 2012.
    [6] A. R. A. Kumar, B. D. Sahoo and A. Dutta, "A Wideband 2–5 GHz Noise Canceling Subthreshold Low Noise Amplifier," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 7, pp. 834-838, July 2018.
    [7] D. Im, H. Kim and K. Lee, "A CMOS Resistive Feedback Differential Low-Noise Amplifier With Enhanced Loop Gain for Digital TV Tuner Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 11, pp. 2633-2642, Nov. 2009.
    [8] M. -Y. Yen and H. -C. Chen, "A Highly Integrated 400–800 MHz Spectrum Sensing System Based on Envelope Detection," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3008-3012, Dec. 2020.
    [9] T. Chung, H. Lee, D. Jeong, J. Yoon and B. Kim, "A Wideband CMOS Noise-Canceling Low-Noise Amplifier With High Linearity," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 8, pp. 547-549, Aug. 2015.
    [10] S. Chao, J. Kuo, C. Lin, M. Tsai and H. Wang, "A DC-11.5 GHz Low-Power, Wideband Amplifier Using Splitting-Load Inductive Peaking Technique," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 482-484, July 2008, doi: 10.1109/LMWC.2008.925099.
    [11] A. R. A. Kumar, A. Dutta and B. D. Sahoo, "A Low-Power Reconfigurable Narrowband/Wideband LNA for Cognitive Radio-Wireless Sensor Network," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 1, pp. 212-223, Jan. 2020
    [12] W. L. Chang et al., "Analytical Noise Optimization of Single-/Dual-Band MOS LNAs With Substrate and Metal Loss Effects of Inductors," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 7, pp. 2454-2467, July 2019.
    [13] D. Schrögendorfer and T. Leitner, "A 1.2 V, 5.5 GHz Low-Noise Amplifier with 60 dB On-Chip Selectivity for Uplink Carrier Aggregation and 1.3 dB NF," 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Los Angeles, CA, USA, 2020, pp. 367-370.
    [14] J. -Y. Hsieh and H. -C. Kuo, "A 0.45-V Low-Power Image-Rejection Low-Noise Amplifier in 0.18-μm CMOS Technology," 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, 2020.
    [15] S. Sattar and T. Z. A. Zulkifli, "A 2.4/5.2-GHz Concurrent Dual-Band CMOS Low Noise Amplifier," in IEEE Access, vol. 5, pp. 21148-21156, 2017.
    [16] T. Kitano, K. Komoku, T. Morishita and N. Itoh, "A CMOS LNA equipped with concurrent dual-band matching networks," 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, 2017, pp. 566-569, doi: 10.1109/APMC.2017.8251508.

    無法下載圖示 全文公開日期 2026/02/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE