簡易檢索 / 詳目顯示

研究生: 邱俊元
Chun-Yuan Chiu
論文名稱: 使用環狀分佈電感之互補式考畢子壓控震盪器暨雙頻帶互補式考畢子壓控震盪器
A Complementary Colpitts Voltage Controlled Oscillator Implemented with Ring Inductor and Dual Band CMOS Complementary Colpitts Voltage Controlled Oscillator
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 莊敏宏
M. H. Juang
趙良君
L. C. Chao
吳乾彌
Wu, Chen-Mie
黃進芳
Jhin-Fang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 95
中文關鍵詞: 考畢子壓控震盪器雙頻帶
外文關鍵詞: Colpitts, Voltage Controlled Oscillator, Dual Band
相關次數: 點閱:627下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成三個部份。第一部分是一個互補式考畢子壓控震盪器使用環狀分布電感具有在高優質(FoM)表現。此壓控振盪器具有在高優質(FoM)表現,是由兩組單端考畢子壓控振盪器組合而成,且TSMC 0.18um 1P6M製造,在電源1.5伏特偏壓下工作。此壓控震盪器電流3.75 mA,消耗功率為5.625mW,操作頻率在5.76GHz~6.76GHz。在距離6.29GHz 載波頻率1MHz處所量測相位雜訊為-122.4dBc/Hz。
    第二部分是雙頻帶互補式考畢子壓控震盪器。此壓控振盪器是由兩組單端考畢子壓控振盪器且使用電晶體開關操作在雙頻帶。在電源2伏特偏壓下工作。此壓控震盪器電流7.45/5.92 mA,消耗功率為14.9/11.84 mW操作頻率在2.39 GHz ~2.68 GH 和4.84 GHz ~5.58 GHz.。在距離2.4GHz 載波頻率1MHz處所量測相位雜訊為-111.76dBc/Hz在距離5.13GHz 載波頻率1MHz處所量測相位雜訊為-121.11dBc/Hz。
    最後一部份介紹八相位分立式壓控震盪器, 此壓控震盪器,電流13.09mA,消耗功率為18.32mW。操作頻率在4.72 GHz ~5.13 GHz。在電源2伏特偏壓下工作。在距離4.89GHz 載波頻率1MHz處所量測相位雜訊為-115dBc/Hz。


    This thesis is mainly composed of three topics. First, we present a novel differential voltage controlled oscillator (VCO) with high figure of merit. The VCO is composed of two single-ended complementary Colpitts LC VCOs coupled by two identical inductors and is implemented in 0.18μm CMOS technology with 1.5V supply voltage. This differential VCO operates at 5.76 GHz ~6.76 GH. The phase noises of the VCO operating at 6.29GHz are -122.4 dBc/Hz at 1MHz offset while the VCO draws 3.75 mA and 5.625 mW consumption from a supply voltage of 1.5V.
    Secondly,A new fully integrated, dual-band CMOS voltage controlled oscillator (VCO) is presented. The VCO is composed of two complementary Colpitts VCOs and is implemented in 0.18μm CMOS technology with 2 V supply voltage. The circuit allows the VCO to operate at two resonant frequencies with a common LC tank. This VCO is configured with 2.4 GHz and 5.2 GHz frequency bands with differential outputs. The dual-band VCO operates at 2.39 GHz ~2.68 GH and 4.84 GHz ~5.58 GHz. The phase noises of the VCO operating at 2.4 GHz and 5.13 GHz are -121.11 and -111.76 dBc/Hz at 1MHz offset, respectively, while the VCO draws 7.45/5.92 mA and 14.9/11.84 mW consumption at high/low frequency band from a 2 V supply.
    And finally, This half-quarter distributed voltage controlled oscillator operates at 4.72 GHz ~5.13 GHz. The phase noises of the VCO operating at 4.89GHz are -115 dBc/Hz at 1MHz offset while the VCO draws 13.09 mA consumption 18.32mW from a supply voltage of 1.4V.

    Contents 中文摘要I ContentsIV List of Figures VI List of Tables IX Chapter 1 Introduction 1 1.1 BACKGROUND 1 1.2 THESIS ORGANIZATION 2 Chapter 2 Analysis of Oscillator 3 2.1 THE OSCILLATOR THEORY 4 2.1.1 Negative Resistance (NR) 4 2.1.2 Positive Feedback (PFB) 7 2.2 ALL TYPES OF OSCILLATORS 9 2.2.1 Ring Oscillator 10 2.2.2 LC-Tank Oscillator 13 2.3 VOLTAGE-CONTROLLED OSCILLATOR 17 2.4 THE PARAMETERS OF VCOS 18 2.4.1 Center Frequency 18 2.4.2 Tuning Range 18 2.4.3 Tuning Linearity 19 2.4.4 Output Amplitude 20 2.4.5 Power Dissipation 20 2.4.6 Supply and Common-Mode Rejection 21 2.4.7 Output Signal Purity 21 2.5 PHASE NOISE 21 2.5.1 Definition of Phase Noise 22 2.5.2 Leeson’s Linear Time-Invariant Phase Noise Model 24 2.5.3 Hajimiri’s Linear Time-Variant Phase Noise Model 26 2.5.4 Rael-Abidi’s Phase Noise Model 32 2.5.5 Noise Sources 34 I. Thermal noise 34 II. Flicker noise 37 2.6 ON-CHIP INDUCTOR RESEARCH 38 2.6.1 Inductor Categories 39 2.6.2 Loss Mechanisms of Inductor 40 I. Metal Loss 40 II. Substrate Loss 42 III. Definitions of Inductor Parameters 42 2.7 VARACTOR 43 2.7.1 P-N Junction Varactor 43 2.7.2 MOS Varactor 44 I. Accumulation-mode MOS varactor 46 II. Inversion-mode MOS varactor 47 Chapter 3… 50 A Complementary Colpitts Voltage Controlled Oscillator Implemented with Ring Inductor 50 3.1 INTRODUCTION 50 3.2 OPERATION PRINCIPLE OF THE VCO 53 I. Colpitts structure 53 II. Colpitts open loop: 53 III. Oscillator frequency and Oscillator condition 54 IV. Complementary Colpitts Oscillator structure 55 V. Complementary Colpitts Oscillator structure 55 3.3 THE RELATIONSHIP BETWEEN HARMONICS AND CIRCUIT 60 3.4 EXPERIMENTAL RESULTS 63 Chapter 4…. 67 Dual Band CMOS Complementary Colpitts Voltage Controlled Oscillator 67 4.1 Introduction 67 4.2 The back-gate coupling topology 68 4.3 Differentially-tuned varactor 70 4.4 Operation principle of the dual band VCO 71 4.5 Experimental results 76 Chapter 5… ……82 The Circular Transmission Lines Apply Half-quarter Distributed Voltage Controlled Oscillator 82 5.1 Introduction 82 5.2 Operation principle of the VCO 83 5.3Traveling wave osillations 84 5.4 Experimental results 85 Chapter 6 Conclusion 90 References… ….92

    [1]B. Razavi, RF microelectronics, Prentice Hall PTR, 1998.
    [2]B. Razavi, Design of analog CMOS integrated circuits, McGraw-Hill,2001.
    [3]D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proc. IEEE, vol. 54, pp. 329-330, 1966.
    [4]K. A. Kouznetsov and R. G. Meyer, “Phase noise in LC oscillators,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1244–1248, 2000.
    [5]J. W. M. Rogers, J. A. Macedo, and C. Plett, “The effect of varactor nonlinearity on the phase noise of completely integrated VCOs,” IEEE J. of Solid-State Circuits, vol. 35, no. 9, pp. 1360–1367, 2003.
    [6]J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” in IEEE Custom Int. Circuit Conf., 2000.
    [7]E. Hegazi, H. Sjoland, and A. Abidi, “A filtering technique to lower oscillator phase noise,” in IEEE Solid-State Circuits Conf., Digest of Technical Papers, pp. 364–365, 2001.
    [8]C. Samori, A. L. Lacaita, A. Zanchi, S. Levantino, and F. Torrisi, “Impact of indirect stability on phase noise performance of fully-integrated LC tuned VCOs,” in IEEE European Solid-State Circuits Conf., pp. 202–205, 1999.
    [9]S. Levantino, C. Samori, A. Bofanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5-GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp. 1003–1011, 2002.
    [10]Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, 1998.
    [11]T. H. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, 2000.
    [12]J. P. Carr and B. M. Frank,”A 38 GHz accumulation MOS differentially tuned VCO design in 0.18-um CMOS,” Silicon Monolithic Integrated Circuits in RF Systems, 2006. Digest of Papers. pp.170 – 173 .Topical Meeting on Jan 2006.
    [13]A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
    [14]R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. Solid-State Circuits, vol. 12, no. 12, pp. 1728–1736, Dec. 2002.
    [15]C.-Y. Cha and S.-G. Lee “A complementary Colpitts oscillator in CMOS technology,” IEEE Trans. Microw. TheoryTech., vol. 53, no. 3, pp. 881 - 887, Mar. 2005.
    [16]S.-H. Lee, Y.-H. Chuang, S.-L. Jang and C.-C. Chen, ” Low-phase noise Hartley differential CMOS voltage controlled oscillator,” IEEE Microw. Wireless Compon. Lett., pp. 145-147, Feb. 2007.
    [17]W. Andress and D. Ham, “Standing wave oscillators utilizing wave adaptive tapered transmission lines,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2004, pp. 50–53.
    [18]A. Kral, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” in Proc. IEEE CICC, May 1998, pp. 555–558.
    [19]S.-M. Yim and K. K. O, “Demonstration of a switched resonator concept in a dual-band monolithic CMOS LC-tuned VCO,” in Proc. IEEE CICC, May 2001, pp. 205–208.
    [20]M. Tiebout, “A CMOS fully integrated 1 GHz and 2 GHz dual band VCO with a voltage controlled inductor,” ESSCIRC, pp.799 – 802, 2002.
    [21]Z. Li and K. K. O, “A low-phase-noise and low-power multiband CMOS voltage-controlled oscillator,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1296 - 1302, 2005.
    [22]M. A. Do, R. Y. Zhao, K. S. Yeo and J. G. Ma, “New wideband/ dualband CMOS LC voltage controlled oscillator. “ IEEE Proc. Circuits, Devices and Systems, Vol. 150 , pp. 453-459 Oct. 2003.
    [23]H. Veenstra and E. van der Heijden, “A 35.2–37.6GHz LC VCO in a 70/100GHz fT/fmax SiGe technology,” in ISSCC Dig. Tech. Papers, pp. 394–395, 2004.
    [24]M. Zannoth, B. Kolb, J. Fenk, and R. Weigel, “A fully integrated VCO at 2GHz,” IEEE J. of Solid-State Circuits, vol. 33, Issue 12, pp. 1987 – 1991, 1998.
    [25]N. H. W. Fong, J.-O. Plouchart, N. Zamdmer, D. Liu,L. F. Wagner, C. Plett and N. G. Tarr, ”A 1V 3.8-5.7GHz wide-band VCO with differentially tuned accumulation MOS varactors for common-mode noise rejection in CMOS SOI technology,” IEEE Trans. Micro. Theory Tech., vol.51, no.8, pp. 1952-1959, 2003.
    [26]H. Moon, S. Kang, Y. T. Kim, and K. Lee, “A fully differential LC-VCO using a new varactor control structure,” IEEE Micro. Wireless Comp. Lett., vol. 14, no. 9, pp. 410 – 412, 2004.
    [27]Neric H. W. Fong, Jean-Olivier Plouchart, N. Zamdmer, D. Liu,L. F. Wagner, C. Plett and N. G. Tarr, ”A 1V 3.8-5.7GHz wide-band VCO with differentially tuned accumulation MOS varactors for common-mode noise rejection in CMOS SOI technology,” IEEE Trans. Microwave Theory Tech., vol.51, pp. 1952-1959, Aug. 2003.
    [28]H. Moon, S. Kang, Y. T. Kim, and K. Lee,” A fully differential LC-VCO using a new varactor control structure,” IEEE Microwave and Wireless Components Letters, vol.14,pp.410 – 412,Sept. 2004.
    [29]J. Rogers, J. Macedo, and C. Plett, “The effect of varactor nonlinearity on phase noise of completely integrated VCOs,” IEEE J. Solid-State Circuits, vol. 35, pp. 1360–1367, Sept. 2001.
    [30]S.-L. Jang, S.-H. Lee, C.-C.Chiu, and Y.-H. Chuang.” A 6 GHz low power differential VCO,” Microwave and Optical Technology Lett., pp.76-79, Jan. 2007.
    [31]L. Jia, J. G. Ma, K. S. Yeo, X. P. Yu, M. A. Do and W. M. Lim, “A 1.8-V 2.4/5.15-GHz dual-band LC VCO in 0.18-um CMOS technology,” IEEE Microwave Wireless Compon. Lett., vol. 16, no. 4, pp. 194–196, Apr. 2006.
    [32]H. Shin, Z. Xu, and M. F. Chang, “A 1.8-V 6/9-GHz switchable dual-band quadrature LC VCO in SiGe BiCMOS technology,” in IEEE RFIC Symp. Jun. 2002, pp. 71–74.
    [33]M. Tiebout, “A CMOS fully integrated 1 GHz and 2 GHz dual band VCO with a voltage controlled inductor,” ESSCIRC, pp.799 – 802, 2002.

    無法下載圖示 全文公開日期 2009/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2017/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE