簡易檢索 / 詳目顯示

研究生: 何昆哲
Kun-che HE
論文名稱: 以數位信號處理器為基礎之小型風力發電系統研製
Development of DSP-Based Small Wind Power Conversion Systems
指導教授: 黃仲欽
Jonq-chin Hwang
口試委員: 葉勝年
Sheng-nian Yeh
賴炎生
Yen-shin Lai
王文智
Wen-jieh, Wang
呂文隆
Wen-lung Lu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 89
中文關鍵詞: 雙三相永磁式同步發電機昇/降壓式直流截波器三相三階層直流-交流功率轉換器
外文關鍵詞: three-phase double-winding permanent-magnet sync, buck/boost dc chopper, three-phase three-level dc-to-ac power converter
相關次數: 點閱:230下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製以數位信號處理器為基礎之小型風力發電系統。本系統可將風力發電機所產生之變動電壓及頻率的交流電源轉換為固定電壓及頻率之三相電源。風力發電機方面,本文採用雙三相永磁式同步發電機配合全橋式二極體整流器之並聯電路結構,不僅可降低整流後直流電壓之漣波成分,亦可縮小體積及成本。在直流-直流功率轉換方面,本文提出能量平衡管理系統,採用昇/降壓式直流截波器控制蓄電池之儲、釋能,以維持供電的可靠性。另於直流-交流功率轉換方面,本文採用三相三階層直流-交流功率轉換器,將直流鏈電壓轉換為交流電源,其優點為有效減少輸出電壓之諧波含量,且可獨立供電及與市電併聯,達到分散式供電系統之功能。
    本文利用套裝軟體Matlab/Simulink進行系統模擬,作為系統控制器設計之依據。採用高性能及低成本的數位信號處理器TMS320F2812為整體系統之控制核心,其控制策略皆由軟體程式完成,不但可減少硬體電路成本,並可增加系統運作之可靠度。本系統已完成520W的發電系統雛形。系統在獨立運轉下,其額定輸出線電壓有效值為220V,頻率為60Hz。在併聯運轉下,可提供實功率及虛功率至電力網路。此外,整體系統之運轉效率為81%,且三相三階層直流-交流功率轉換器輸出線電壓之總諧波失真率為2.57%。實驗結果驗證本文之理論分析及控制法則的可行性。


    This thesis presents the development of DSP-based small wind power conversion systems. In this system, paralleled full-bridge rectifiers and dc-to-ac power converters are proposed to convert ac power generated by wind with varying-voltage and varying-frequency to three-phase electrical power with constant-voltage and constant-frequency. In wind generator, the proposed three-phase double-winding permanent-magnet synchronous generator with paralleled full-bridge rectifiers can not only reduce the voltage ripple at the output of rectifiers, but also decrease the size and cost of the system. In dc-to-dc power converter, the buck/boost dc chopper is designed to charge and discharge batteries. It can accomplish the management of energy balance control and enhance the reliability of the system. In dc-to-ac power conversion, a three-phase, three-level power converter is proposed to reduce the output voltage harmonics. The system realized can be operated either in a stand-alone or grid-connected operation fashion.
    In this thesis, digitized mathematical model and controller design are built and simulated by Matlab/Simulink. Then, a high-performance, low-cost digital signal processor, TMS320F2812, is used to implement the system for reducing the circuit components and cost. A prototype of 520W wind power conversion system is developed. The system can feed proper power to the grid in grid-connected operation, while for stand-alone operation, the rated line-voltage is 220V and the frequency is 60Hz. Besides, the experimental results show that the efficiency of the whole system reaches 81% and voltage harmonic distortion of three-phase, three-level power inverter output is 2.57%. Finally, simulation and experimental results are given to justify the analysis.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌 謝 Ⅲ 目 錄 Ⅳ 符號索引 Ⅶ 圖表索引 Ⅹ 第一章 緒論 1 1.1 研究動機 1 1.2 文獻探討 1 1.3 系統架構及本文特色 2 1.4 本文大綱 3 第二章 風力驅動之永磁式同步發電機系統 5 2.1 前言 5 2.2 雙三相永磁式同步發電機及其數學模式 5 2.3 雙三相串聯及並聯全橋式二極體整流器之分析 9 2.3.1 三相全橋式整流器之獨立供電 11 2.3.2 雙三相全橋式整流器之串聯模式 11 2.3.3 雙三相全橋式整流器之並聯模式 12 2.4 結語 15 第三章 三相三階層直流-交流功率轉換器分析與控制 16 3.1 前言 16 3.2 三相三階層直流-交流功率轉換器之分析 16 3.2.1 二階層與三階層直流-交流功率轉換器之分析 16 3.2.2 三階層直流-交流功率轉換器脈波寬度調變控制 18 3.2.3 二階層與三階層直流-交流功率轉換器之模擬與實測 21 3.3 三相三階層直流-交流功率轉換器之控制 27 3.3.1 三相直流-交流功率轉換器同步旋轉座標之模式 27 3.3.2 三相三階層功率轉換器中性點電位對稱策略 29 3.3.3 三相三階層直流-交流功率轉換器之控制策略 30 3.4 結語 34 第四章 風能轉換與能量管理系統 35 4.1 前言 35 4.2 風能簡介 35 4.3 風能轉換原理及特性 35 4.4 能量平衡管理之昇/降壓式直流截波器分析 37 4.4.1 降壓模式之直流截波器 38 4.4.2 昇壓模式之直流截波器 40 4.5系統之能量管理 42 4.5.1 獨立供電系統 43 4.5.2 併聯供電系統 45 4.6 風力發電系統之最大功率追蹤策略 47 4.7 結語 49 第五章 實體製作與實測結果 50 5.1 前言 50 5.2 硬體電路 50 5.2.1 數位信號處理器之介面電路 50 5.2.2 電壓回授電路 51 5.2.2.1 交流電壓回授電路 52 5.2.2.2 直流電壓回授電路 53 5.2.3 電流回授電路 53 5.2.4 功率電晶體之閘極驅動電路 55 5.2.5 雙向功率電晶體之開關電路 55 5.2.6 電壓零點偵測電路 56 5.3 軟體規劃 56 5.3.1 回授信號處理 56 5.3.2 主程式規畫 58 5.3.3 蓄電池充放電系統程式規劃 59 5.3.4 三相三階層直流-交流功率轉換器獨立供電程式規劃 60 5.3.5 三相三階層直流-交流功率轉換器市電併聯程式規劃 63 5.4 實測結果 64 5.5 結語 80 第六章 結論與建議 81 6.1 結論 81 6.2 建議 82 參考文獻 83 附 錄 87 作者簡介 89

    [1] N. Hatziargyriou and A. Zervos, “Wind Power Development in Europe,” IEEE Proceedings, Vol.89, No. 12, pp. 1765-1782 (2001).
    [2] L. Surugiu and I. Paraschivoiu, “Wind Power Contribution to Environmental Issues,” The 1st World Wind Energy Conference and Exhibition, Berlin, Germany, PB2.1 (2002).
    [3] M. Karrari, W. Rosehart and O. P. Malik, “Comprehensive Control Strategy for a Variable Speed Cage Machine Wind Generation Unit,” IEEE Transactions on Energy Conversion, Vol. 20, No. 2, pp. 415-423(2005).
    [4] M.G. Simoes, B. K. Bose and R. J. Spiegel, “Design and Performance Evaluation of a Fuzzy-Logic-Based Variable-Speed Wind Generation System,” IEEE Transactions on Industry Applications, Vol. 33, No. 4, pp. 956-965 (1997).
    [5] M. Naidu and J. Walters, “A 4-kW 42-V Induction-Machine-Based Automotive Power Generation System with a Diode Bridge Rectifier and a PWM Inverter,” IEEE Transactions on Industry Applications, Vol. 39, No. 5, pp. 1287-1293 (2003).
    [6] M. H. Chen, S. N. Yeh, and J. C. Hwang, “Design of Single-phase Three-level Inverters for Wind Power Systems with Double-Winding Permanent-Magnet Synchronous Generators,” International Journal of Electrical Engineering, Vol. No. 1, pp. 39-49 (2007).
    [7] M. H. Nehrir, B. J. LaMeres, G. Venkataramanan, V. Gerez and L. Alvarado, “An Approach to Evaluate the General Performance of Stand-Alone Wind/Photovoltaic Generating Sysems,” IEEE Transactions on Energy Conversion, Vol. 15, No. 4, pp.433-439 (2000).
    [8] 陳明宏,交流-直流-交流功率控制器於三相雙繞組永磁式同步風力發電機系統之應用,國立台灣科技大學電機研究所博士論文,民國九十六年。
    [9] S. J. Chiang, K. T. Chang and C. Y. Yen, “Residential Photovoltaic Energy Storage System,” IEEE Transactions on Industrial Electronics, Vol. 45, No. 3, pp. 385-394 (1998).
    [10] M. H. Chen, S. N. Yeh, and J. C. Hwang, “Design of single-phase three-level inverters for wind power systems with double-winding permanent-magnet synchronous generators,” The 5th World Wind Energy Conference and Exhibition, New Delhi, India (2006).
    [11] M. J. Ryan and R. D. Lorenz, “A Synchronous-Frame Controller for a Single-Phase Sine Wave Inverter,” IEEE APEC Conference Record, pp. 813-819 (1997).
    [12] G. Carrara, S. Gardella, M. Marchesoni, R. Salutari and G. Sciutto, “A New Multilevel PWM Method: A Theoretical Analysis,” IEEE Transactions on Power Electronics, Vol. 7, No. 3, pp. 497-505 (1992).
    [13] 王俊超,六相永磁式同步電動機驅動器之分析及研製,國立台灣科技大學電機研究所碩士論文,民國九十四年。
    [14] A. B. Proca, A. Keyhani, A. El-Antably, W. Lu, and M. Dai, “Analytical Model for Permanent Magnet Motors with Surface Mounted Magnets,” IEEE Transactions on Energy Conversion, Vol. 18, No.3 , pp. 386-391 (2003).
    [15] 李惇榮,三相三階層雙向功率轉換器之研製,國立台灣科技大學電機工程研究所碩士論文,民國九十三年。
    [16] 何世賓,凸極式永磁式同步電動機之高效率及高速控制系統研製,國立台灣科技大學電機研究所碩士論文,民國八十九年。
    [17] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, The 2nd edition, Wiley (1995).
    [18] 康宗仁,永磁同步發電機之風力發電功率控制系統之研製,國立台灣科技大學電機研究所碩士論有,民國九十四年。
    [19] Z. Chen and E. Spooner, “Grid Power Quality with Variable Speed Wind Turbines,” IEEE Transactions on Energy Conversion, Vol. 16, No. 2, pp. 148-154 (2001).
    [20] 蔡宗志,以數位訊號處理器為基礎之太陽能與風力發電複合系統之研製,國立台灣科技大學電機工程研究所碩士論文,民國九十四年。
    [21] C. Liu, A. Johnson and J. S. Lai, “A Novel Three-Phase High-Power Soft-Switched DC-DC Converter for Low-Voltage Fuel Cell Applications,” IEEE Transactions on Industry Applications, Vol. 41, No. 6, pp. 1691-1697 (2005).
    [22] K. P. Louganski and J. S. Lai, “Active Compensation of the Input Filter Capacitor Current in Single-phase PFC Boost Converters,” IEEE compel workshop, rensselaer polytechnic institute, troy, NY, USA, July 16-19 (2006).
    [23] 張佑榮,以數位信號處理器為基礎之太陽能發電系統之研製,國立台灣科技大學電機工程研究所碩士論文,民國九十五年。
    [24] P. C. Krause, Analysis of Electric Machinery, McGraw-Hill, New York (1987).
    [25] 林聖賢,市電併聯型太陽能與風力發電系統研製,國立中正大學電機工程研究所碩士論文,民國九十二年。
    [26] S. H. Song, S. I. Kang and N. K. Hahm, “Implementation and Control of Grid Connected AC-DC-AC Power Converter for Variable Speed Wind Energy Conversion System,” IEEE APEC Conference Record, pp. 154-158 (2003).
    [27] A. E. Haniotis, K. S. Soutis, A. G. Kladas and J. A. Tegopouls, “Grid Connected Variable Speed Wind Turbine Modeling, Dynamic Performance and Control,” IEEE PES Conference Record, pp. 759-764 (2004).
    [28] 王國丞,並聯型三相不斷電系統之研製,國立台灣科技大學電機工程研究所碩士論文,民國九十五年。
    [29] K. C. A. de Souza, M. R. de Castro and F. Antunes, “A DC/AC Converter for Single-Phase Grid-Connected Photovoltaic Systems,” IEEE IECON Conference Record, pp. 3268-3273 (2002).
    [30] 林祐任,協調可控整流器與可控換流器於風力用發電機之控制,國立成功大學電機工程研究所碩士論文,民國九十五年。
    [31] 鄭淑珠,台灣地區風速與風向分佈之分析,國立台灣海洋大學河海工程研究所碩士論文,民國九十一年。
    [32] 謝明志,六相永磁式同步發電機之風力發電系統研製,國立台灣科技大學電機工程研究所碩士論文,民國九十五年。
    [33] F. Valenciaga, P. F. Pulston and P. E. Battaiotto, “Power Control of a Solar/Wind Generation System Without Wind Measurement: A Passivity/Sliding Mode Approach,” IEEE Transactions on Energy Conversion, Vol. 18, No. 4, pp. 501-507 (2003).
    [34] TMS320F28xx DSP Controllers CUP, System, and Instruction Set Vol. 1 & Vol. 2, Texas Instruments (2004).
    [35] K. S. Low, Y. Z. Deng and X. L. Guo, “Two-Degree-of-Freedom Control of A PMSM Drive Without Mechanical Sensor,” IEEE Transactions on Power Electronics, Vol. 1, No. 8, pp. 498-502 (1998).

    QR CODE