簡易檢索 / 詳目顯示

研究生: 黃永光
Yung-Kuang Huang
論文名稱: 全域式晶圓翹曲量測技術
Full-field wafer warpage measurement technique
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 李朱育
Ju-Yi Lee
許正治
Cheng-Chih Hsu
林世聰
Shyh-Tsong Lin
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 83
中文關鍵詞: 疊紋全域式光柵自成像效應移相法翹曲
外文關鍵詞: Moiré, Full-field, Talbot effect, Phase-shift method, Warpage
相關次數: 點閱:175下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功開發一套創新的全域式晶圓翹曲量測系統,用以即時偵測待測晶圓的翹曲值及其表面形貌。此套晶圓翹曲量測技術以「疊紋」為技術核心,結合光柵自成像效應、瞬時相移法及四步移相法等設計概念進行開發,使系統具備高解析度、高穩定度及全域式的偵測能力。藉由全域式的光路設計使一雷射光源通過擴束系統後,形成一道直徑兩吋(2″)的準直光束,而後入射至待測晶圓表面,此道準直光束被待測晶圓表面反射之後,將依序穿透兩片自製的同心圓狀光柵,再聚焦於CCD攝影機上進行影像擷取,最後透過自行開發的影像分析模組計算待測晶圓之翹曲量及其表面形貌。由於兩同心圓狀光柵放置間距遵循泰柏成像定理,可使第一片光柵的影像清楚地成像於第二片光柵上,進而交疊出相對應的同心圓疊紋條紋影像,此疊紋條紋影像之週期大小可藉由控制兩光柵影像之週期來調整。當待測晶圓發生翹曲時,晶圓表面各偵測點的傾斜角度變化量將載於反射準直光束之中,使同心圓疊紋條紋影像沿其徑向產生相對性橫移,透過瞬時相移法及四步移相法即可計算晶圓表面各偵測點的傾斜角度變化,將各點的傾斜角度值沿著同心圓疊紋條紋徑向進行累加,即可得到待測晶圓的翹曲值及其表面形貌。由實驗結果證明,本套全域式晶圓翹曲量測系統可精準地量測整面晶圓之翹曲變形及其表面輪廓,當待測晶圓上各偵測點之角度解析度為2µrad時,其最小可量測到之相對翹曲值約為0.04μm。此套系統可直接架設於待測設備上或腔體之外,不會影響磊晶製程品質,相較於現有的光束量測法、共焦顯微法、雷射干涉儀、陰影疊紋法、結構光法等翹曲量測技術,本技術具備全域式量測、高量測解析度、高穩定度以及高可調性等量測優勢。


    A full-field wafer warpage measurement technique for measuring wafer warpage and surface topography is presented in this study. The wafer warpage measurement technique is developed based on moiré method, Talbot effect, as well as four-step phase shift method, granting it high resolution, high stability and full-field measurement capabilities. Following the full-field optical path design a laser beam is expanded into a collimated beam with a 2 inch diameter and projected onto the wafer surface. The beam is reflected by the wafer surface and forms a moiré fringe image after passing two circular gratings, which is then focused and captured on a CCD camera for computation on a self-developed image analysis module. In accordance with the Talbot effect, the distance between the two circular gratings can be arranged such that the diffraction image of the first grating can be clearly projected onto the second one, thus creating the corresponding circular moiré pattern. The periodic variation of the pattern can be adjusted by altering the period of the two gratings. When wafer warpage occurs, changes in the slope of each detection point will be reflected in the reflected beam, resulting in a corresponding linear shift in the radial direction of the circular moiré pattern. The change in the slope of each detection point can be calculated via the instantaneous phase-shift method and the four-step phase-shift method, and by arranging the angular value of each point along the radii of the circular gratings, the warpage value and surface topography of the wafer can be obtained. The results of the experiment show that this technique can accurately measure wafer warpage and its surface topography, and that when the angular resolution of the detection points on the tested wafer is 2 μrad the minimum relative warpage value that can be detected is approximately 0.04 μm. The structure can be mounted directly on the equipment under test or the outside of the testing chamber, avoiding adverse effects on the quality of epitaxial wafer fabrication. Compared to current warpage measurement methods such as the beam optical method, confocal microscopy, laser interferometry, shadow moiré method, and structured light method, this technique has the advantage of full-field measurement, high resolution, stability and adaptability.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 vii 表目錄 ix 符號說明 x 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 光學式晶圓翹曲量測技術之文獻回顧 2 1.2.2 全域式表面形貌量測技術之文獻回顧 7 1.3 研究目的 16 1.4 論文架構 16 第二章 基礎理論 18 2.1 光柵自成像效應(Talbot effect) 18 2.2 疊紋(Moiré) 20 2.2.1 線性疊紋型態表示式 20 2.2.2 同心圓狀疊紋型態表示式 25 2.3光線偏折角度與疊紋變化關係 26 2.3.1 擴束系統 27 2.3.2 光線偏折角度與疊紋變化關係 28 2.4 四步移相法計算疊紋相位 30 2.5 瞬時相移法 31 2.6 疊紋條紋相位變化與晶圓翹曲關係 32 2.7 小結 34 第三章 全域式晶圓翹曲量測系統 35 3.1 系統元件介紹 35 3.2 全域式晶圓翹曲量測系統 37 3.3 影像分析模組 39 3.4 相位解纏繞系統 40 3.5 光柵配置系統 41 3.5.1 光柵間距配置 41 3.5.2 光柵對位校正 43 3.6 小結 44 第四章 實驗結果與討論 46 4.1 傾斜角度量測實驗 46 4.1.1 傾斜角度量測實驗之架構 46 4.1.2 傾斜角度量測實驗之結果 47 4.2 全域式晶圓翹曲量測實驗 52 4.2.1 全域式晶圓翹曲量測之架構 52 4.2.2 全域式晶圓翹曲量測之結果 53 4.3 量測系統性能測試與討論 57 4.3.1 最小步階量測 57 4.3.2 重複性量測 59 4.3.3 不同接觸點量測 62 第五章 誤差分析 65 5.1 光柵對位誤差 65 5.2 光柵間距誤差 68 5.3 相位計算誤差 70 5.4 CCD曝光時間 72 第六章 結論與未來展望 75 6.1 結論 75 6.2 未來展望 75 參考文獻 78 附件 82

    [1] http://nccur.lib.nccu.edu.tw/bitstream/140.119/34273/7/53037107.pdf
    [2] Sungbum Kang and I. Charles Ume, “Techniques for Measuring Warpage of Chip Packages, PWBs, and PWB Assemblies,” IEEE, Components, Packaging and Manufacturing Technology, pp.1533-1544, 2013.
    [3] LayTec Information Note, “Wafer Curvature Measurements for Real-time Optical Control of Epitaxial Growth,” 2010.
    [4] J. H. Tsai, M. Y. Fu, and C. F. Yang, “The improvement of the measuring level of the surface curvature based on the spot-radius of a collimated Gaussian laser beam,” Opt. Laser. Technol. 39, pp.1551-1554, 2007.
    [5] Aoki Takeshi, Yasuo Nishikawa and Seiichi Kato, “An improved optical lever technique for measuring film stress,” Jpn. J. Appl. Phys. 28, pp.299-300, 1989.
    [6] D. Yong, J. H. Zhao and P. Ho, “An optical method for measuring the two-dimensional surface curvatures of electronic packages during thermal cycling,” J. Electron. Packag. 123(3), pp.196-199, 2000.
    [7] http://www.stilsa.com/EN/pdf/optical%20principles%20CCS.pdf
    [8] B. Sutapun, A. Somboonkaew, R. Amarit and S. Chanhorm, “Development and Beam-Shape Analysis of an Integrated Fiber-Optic Confocal Probe for High-Precision Central Thickness Measurement of Small-Radius Lenses,” Sensors 15(4), pp.8512-8526, 2015.
    [9] L. Kocsányi and J. Giber, “Noncontact Optical Measuring Methods Of Silicon Wafer Deformation,” Proc. SPIE 473, pp. 149-151, 1985.
    [10] M. M. Moslehi, “Apparatus systems and methods for measuring defects in semiconductor processing,” EP0641992 A2, 1995.
    [11] H. L. Hsieh, Y. G. Huang, Y. H. Tsai and Y. H. Huang, “Development of a wafer warpage measurement technique using Moiré-based method,” Appl. Opt. 55(16), pp.4370-4377, 2016.
    [12] C. Hartsough, A. Goswami, C. Jang and B. Han, (2007, May), “Advanced Co-Planarity Measurement Tools for the Warpage Investigation of Non-Conventional Packages Caused by Reflow and Assembly Process,” IEEE, Electronic Components and Technology Conference, pp. 767-772, 2007.
    [13] M. A. Brown, T. S. Park, A. Rosakis, E. Ustundag, Y. Huang, N. Tamura and B. Valek, “A comparison of X-ray microdiffraction and coherent gradient sensing in measuring discontinuous curvatures in thin film: substrate systems,” J. Appl. Mech. 73(5), pp.723-729, 2006.
    [14] W. Y. Chang, F. H. Hsu, K. H. Chen, J. H. Chen, H. C. Hsieh and K. Y. Hsu, “Reconstruction of surface profile by using heterodyne moiré method,” Opt. Com. 285(24), pp.5337-5340, 2012.
    [15] M. S. Jeong and S. W. Kim, “Color grating projection moiré with time-integral fringe capturing for high-speed 3-D imaging,” Opt. Eng. 41(8), pp.1912-1917, 2002.
    [16] J. Mu, Z. Guan, J. Kang, T. Bian and F. Su, “Error analysis of phase shifting by varying the incident angle of parallel beams in shadow Moiré,” Optik-International Journal for Light and Electron Optics 124(24), pp.6769-6771, 2013.
    [17] H. Guo, H. He and M. Chen, “Gamma correction for digital fringe projection profilometry,” Appl. Opt. 43(14), pp.2906-2914, 2004.
    [18] J. Villa, M. Araiza, D. Alaniz, R. Ivanov and M. Ortiz, “Transformation of phase to (x, y, z)-coordinates for the calibration of a fringe projection profilometer,” Opt. Las. Eng. 50(2), pp. 256-261, 2012.
    [19] Y. Niu, H. Lee and S. Park, “A new in-situ warpage measurement of a wafer with speckle-free digital image correlation (DIC) method,” IEEE, Electronic Components and Technology Conference, pp. 425-431, 2015.
    [20] D. S. Mehta, S. K. Dubey, C. Shakher and M. Takeda, “Two-wavelength talbot effect and its application for three-dimensional step-height measurement,” Appl. Opt. 45(29), pp.7602-7609, 2006.
    [21] D. Thomae, O. Sandfuchs and R. Brunner, “Quantitative analysis of imperfect frequency multiplying in fractional Talbot planes and its effect on high-frequency-grating lithography,” JOSA A 31(7), pp.1436-1444, 2014.
    [22] K. Creath and J. C. Wyant, “Moiré and Fringe Projection Techniques,” Optical Shop Testing, Second Edition, pp.653-685, 1992.
    [23] C. Shakher, S. Prakash, D. Nand and R. Kumar, “Collimation testing with circular gratings,” Appl. Opt. 40(8), pp.1175-1179, 2001.
    [24] F. Xu, S. Zhou, S. Hu, W. Jiang, L. Luo and H. Chu, “Moiré fringe alignment using composite circular-line gratings for proximity lithography,” Opt. Express 23(16), pp.20905-20915, 2015.
    [25] J. M. Enoch, “A SPECTACLE-CONTACT LENS COMBINATION USED AS A REVERSE GALILEAN TELESCOPE IN UNILATERAL APHAKIA*,” Optometry & Vision Science 45(4), pp.231-240, 1968.
    [26] J. N. Lee and C. C. Chen, “A Monochrome Light-Emitting Diode Moiré Deflectometry Technique for Two-Dimensional Temperature Measurement,” J. Heat Transfer 136(10), pp.101601-1-101601-7, 2014.
    [27] Y. Nakano and K. Murata, “Measurements of phase objects using the Talbot effect and moiré techniques,” Appl. Opt. 23(14), pp.2296-2299, 1984.
    [28] M. Wang, L. Ma, D. Li and J. Zhong, “Subfringe integration method for automatic analysis of moire deflection tomography,” Opt. Eng. 39(10), pp.2726-2733, 2000.
    [29] Y. L .Chen and D. C. Su, “Full-field measurement of the phase retardation for birefringent elements by using common path heterodyne interferometry,” Opt. Las. Eng. 47(3), pp.484-487, 2009.
    [30] T. Kreis, “Digital holographic interference-phase measurement using the Fourier-transform method,” JOSA A 3(6), pp.847-855, 1986.
    [31] H. N. Yen, D. M. Tsai and J. Y. Yang, “Full-field 3-D measurement of solder pastes using LCD-based phase shifting techniques,” IEEE, Electronics Packaging Manufacturing 29(1), pp.50-57, 2006.
    [32] T. W. Hui and G. K. H. Pang, “3-D measurement of solder paste using two-step phase shift profilometry,” IEEE, Electronics Packaging Manufacturing 31(4), pp.306-315, 2008.
    [33] T. C. Poo and K. B. Doh, “On the theory of optical Hilbert transform for incoherent objects,” Opt. Express 15(6), pp.3006-3011, 2007.

    QR CODE