簡易檢索 / 詳目顯示

研究生: 賴彥良
Yen-Lian Lai
論文名稱: 改進Mirau全域式光學同調斷層掃描儀之Mirau干涉儀
The improvement of Mirau interferometer for the Mirau0based full-field optical coherence tomography
指導教授: 葉秉惠
Ping-Hui Yeh
口試委員: 徐世祥
Shih-Hsiang Hsu
黃升龍
Sheng-Lung Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 光學同調斷層掃描
外文關鍵詞: OCT
相關次數: 點閱:248下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文中使用實驗室生長的摻鉻鎂橄欖石晶體光纖以 520nm 綠光雷射泵浦產生放大自發輻射(Amplified spontaneous emission; ASE)作為Mirau-based 全域式光學同調斷層掃瞄系統所使用的光源,共使用兩顆 1-W 520nm 之雷射二極體泵浦摻鉻鎂橄欖石晶體光纖,對於沿 C 軸方向生長的摻鉻鎂橄欖石晶體光纖可以產生 1.4 mW ASE,中心波長 900 nm、頻寬 250 nm,可以使 OCT 系統上在活體組織中有 1.18 μm的縱向解析度能力;沿 B 軸方向生長的摻鉻鎂橄欖石晶體光纖可以產生3mW ASE,中心波長 900 nm、頻寬 200 nm,可使OCT 系統搭配 40X 物鏡下得到0.98μm 的橫向解析度能力,1.2 μm的縱向解析度能力。
    皮膚切片是臨床上用來判斷皮膚疾病的準則,在皮膚切片上有分成鑽取活組織檢查(Punch biopsy)、活削活組織檢查(Shave biospy)、切口活組織檢查(Incisional biopsy),皮膚切片檢查是屬於侵入式的檢測方式,這樣子的檢測方式會讓病患傷口流血並且可能留下疤痕,光學同調斷層掃描術(Optical coherence tomography; OCT)在生醫影像中佔有很重要的地位,其在量測時不需要特別做標記,能夠以非侵入的方式量出樣本3D立體影像結構。
    本論文中針對Mirau干涉儀部分進行改良,藉由改變鍍膜設計,使得干涉效率由7.64%大幅上升至22.35%,可有效提升訊噪比(Signal noise ratio, SNR)與影像品質。


    In this thesis, Cr:forsterite crystal fiber amplified spontaneous emission(ASE) light source was used to build a Mirau-based full-field optical coherence tomography system using two 520-nm laser diode to pump the different axis Cr:forsterite crystal fiber. The C-axis fiber can generate 3-mW ASE light centered at 900 nm with a bandwidth of 250 nm was generated. The B-axis fiber generated ASE light centered at 900nm with a bandwidth of 200um. The mirau-based full-firld OCT has an axial resolution of 1.2um and a lateral resolution of 0.98um.
    Skin biopsy is the gold standard for doctor to diagnosis skin cancers. There are several ways to do the skin biopsy such as punch biopsy, shave biopsy, incisional biopsy, incisional biopsy. These methods are all invasive that make the patient bleed and leave scar. Optical coherence tomography is one of the techniques in the biomedical imaging system. It is a noninvasive, label-free and 3D imaging method.
    In this system, we can acquire in-vivo skin image and get high-resolution 3D volume structure.
    In this thesis, we especially improve the design of our Mirau device to make interference efficiency increase from 7.64% to 22.35% and effective increase the noise signal ratio and obviously improve the quality of image.

    目錄 摘 要 ……………………………………………………… VI Abstract ……………………………………………………… VII 致 謝 ……………………………………………………… VIII 目 錄 ……………………………………………………… X 圖目錄 ……………………………………………………… XIII 表目錄 ……………………………………………………… XⅥII 第一章   導論…………………………………………… 1 1.1 1.2 1.3 緒論…………………………………………… 研究動機……………………………………… 文獻回顧……………………………………… 1 3 3 第二章   Mirau全域式光學同調斷層掃描…………… 8 2.1 2.1.1 2.1.2 2.2 2.3 2.4 2.5 2.6 光學同調斷層掃描基本原理………………… 解析度…………………………………………   全域式光學同調斷層掃描術………………… 影像處理與運算……………………………… 摻鉻鎂橄欖石晶體材料特性………………… 摻鉻鎂橄欖石晶體光學特性………………… 摻鉻鎂橄欖石晶體光纖傳輸膜態原理……… 摻鉻鎂橄欖石晶體光纖之製備……………… 8 13 16 19 22 28 34 37 第三章   光學薄膜特性與電子槍蒸鍍系統…………… 43 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2   光學薄膜………………………………………   光學薄膜特性分析與設計 …………………   薄膜材料特性…………………………………   薄膜設計模擬軟體……………………………   電子槍………………………………………… 電子槍蒸鍍系統基本原理…………………… 電子槍蒸鍍系統監控原理…………………… 43 43 48 50 53 54 57 第四章 全域式光學同調斷層掃描設計與改良……… 60 4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4   摻鉻鎂橄欖石晶體光纖光源模組…………… Mirau干涉儀設計…………………………… Mirau物鏡…………………………………… 干涉儀組件設計……………………………… Mirau物鏡元件………………………………   Mirau物鏡量測示意圖……………………… 60 62 63 65 68 72 第五章   Mirau干涉儀的新設計結果與討論………… 78 5.1 5.2 5.3 5.4 5.5   使用摻鉻鎂橄欖石晶體光纖光源之Mirau- based……………………………………………… 原黑點設計變更為銀點設計鍍膜…………… 原設計與新設計下干涉效率之比較………… 鍍膜製程品質之改善………………………… 掃描樣本之結果……………………………… 78 83 86 89 91 第六章   未來展望……………………………………… 94 參考文獻 ……………………………………………………… 96  

    [1] A. F. Fercher, "Ophthalmic interferometry." Proceedings of the International Conference on Optics in Life Sciences, Garmisch-Partenkirchen, Germany, 12–16 August 1990.
    [2] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “ Optical coherence tomography. ” Science 254, 1178–1181 (1991).
    [3] W. Drexler, J. G. Fujimoto, “ Optical Coherence Tomography – technologies and applications.” second edition.
    [4] A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, “In vivo optical coherence tomography. ” Am. J. Ophthalmol. 116, 113–114 (1993)
    [5] E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography. ” Opt. Lett. 18, 1864–1866 (1993).
    [6] M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, J. G. Fujimoto, “Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology.” Circulation 93, 1206–1213 (1996).
    [7] P. Parsa, S. L. Jacques, N. S. Nishioka, “ Optical properties of rat liver between 350 and 2200 nm.”.
    [8] Fujimoto and Drexler, “Introduction to Optical Coherence Tomography,” in Optical Coherence Tomography, Drexler and Fujimoto, Eds. Springer Berlin Heidelberg, 2008, pp. 1–45.
    [9] Rayleigh criterion. Available: http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/raylei.html.
    [10] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6 edition. New York: Oxford University Press, 2006..
    [11] K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara with A. Dubois, 97 “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt., vol. 43, no. 14, pp. 2874–2883, May 2004.
    [12] 林耀聖, “全域式光學同調斷層掃描技術之研究.”國立台灣大學光電工程研究所,
    [13] R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol., vol. 77, no. 1, pp. 13–19, Jul. 1981.
    [14] C. A. Burrus and J. Stone, “Single−crystal fiber optical devices: A Nd:YAG fiber laser,” Appl. Phys. Lett., vol. 26, no. 6, pp. 318–320, Mar. 1975.
    [15] W. Drexler, Y. Chen, A. Aguirre, B. Považay, A. Unterhuber, and J. G. Fujimoto, “Ultrahigh Resolution Optical Coherence Tomography,” in Optical Coherence Tomography, W. Drexler and J. G. Fujimoto, Eds. Springer Berlin Heidelberg, 2008, pp. 239–279..
    [16] K.-Y. Hsu, D.-Y. Jheng, Y.-H. Liao, T.-S. Ho, C.-C. Lai, and S.-L. Huang, “Diode- laser-pumped glass-clad Ti:sapphire crystal-fiber-based broadband light source,” IEEE Photonics Technol. Lett., vol. 24, no. 10, pp. 854–856, May2012..
    [17] Zeiss Objective EC Plan-Neofluar 40x/0.75 transmittance. Available:https:// www.micro-shop.zeiss.com/?s=191483241fb3b94&l=en&p=us&f=o&a=v&m=s&id=440350-9903-000&o=..
    [18] 王政凱, “摻鈦藍寶石寬頻晶體光纖光源之製備與檢測.”國立台灣大學光電工程研究所, 2011.
    [19] Human skin anatomy. Available:http://www.healthhype.com/human-skin- anatomy-structure-of-epidermis-and-dermis-layers.html.
    [20] T. T. Sun and H. Green, “Immunofluorescent staining of keratin fibers in cultured cells,” Cell, vol. 14, no. 3, pp. 469–476, Jul. 1978. 98
    [21] H. Shimizu, Shimizu’s textbook of dermatology, 1st edition. Japan: Hokkaido University Press/Nakayama Shoten, 2007.
    [22] N. Otberg, H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, and J. Lademann, “Variations of Hair Follicle Size and Distribution in Different Body Sites,” J. Invest. Dermatol., vol. 122, no. 1, pp. 14–19, Jan. 2004.
    [23] P. Beard, “Biomedical photoacoustic imaging,” Interface Focus, vol. 1, no. 4, pp.602–631, Aug. 2011.
    [24] R. K. Wang and V. V. Tuchin, Advanced Biophotonics: Tissue Optical Sectioning..
    [25] S. H. Lu, C. J. Chang, and C. F. Kao, “Full-field optical coherence tomography using immersion Mirau interference microscope,” Appl. Opt., vol. 52, no. 18, pp. 4400–4403, Jun. 2013.https://en.wikipedia.org/wiki/Czochralski_process#cite_note-1
    [26] D. H. Sliney and J. Mellerio, Safety with Lasers and Other Optical Sources: A Comprehensive Handbook. Springer Science & Business Media, 2013.
    [27] H. Salem and S. A. Katz, Alternative Toxicological Methods. CRC Press, 2003.
    [28] K. P. Wilhelm, P. Elsner, E. Berardesca, and H. I. Maibach, Bioengineering of the Skin: Skin Imaging & Analysis. CRC Press, 2006.
    [29] L. F. Hoyt, “New Table of the Refractive Index of Pure Glycerol at 20°C,” Ind. Eng. Chem., vol. 26, no. 3, pp. 329–332, Mar. 1934..
    [30] J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus,“Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol., vol. 39, no. 10, p. 1705, Oct. 1994.
    [31] C. C. Tsai, C. K. Chang, K. Y. Hsu, T. S. Ho, M. Y. Lin, J. W. Tjiu, and S.L.Huang, “Full-depth epidermis tomography using a Mirau-based full-field optical coherence tomography,” Biomed. Opt. Express, vol. 5, no. 9, p. 3001, Sep. 2014.
    [32] R. Joshi, “Clues to histopathological diagnosis of treated leprosy,” Indian J.Dermatol., vol. 56, no. 5, p. 505, 2011.
    [33] Stratum corneum structure. Available:http://www.reamin.co.uk/view-of-the-epidermis-and-the-uppermost-layer-of-the-skin-the-brick-and-mortar-structured-stratum-corneum/.
    [34] J. Serup, G. B. E. Jemec, and G. L. Grove, Handbook of Non-Invasive Methods and the Skin, Second Edition. CRC Press, 2006.
    [35] Cz. Koepke, K. Wisniewski, and M. Grinberg, "Excited
    statespectr-oscopy of chromium ions in various valence states inglass," J.Alloys and Compounds, 341, 19 ( 2002).
    [36] U. Hommerich, X. Wu, and V. R. Davis, " Demonstrationofroom-temperature laser action at 2.5 μmfromCr2+:Cd0.85Mn0.15Te, "Opt. Lett., 22, 1180 (1997).
    [37] S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev "CW and pulsed Cr2+:ZnS and ZnSe microchip lasers, "Technical Digest,Conference on Lasers and Electro-Optics,120 (2002).
    [38] J. McKay, K. L. Schepler and G. C. Catella, "Efficientgrating-tunedmid-infrared Cr2+:CdSe laser," Optics Letters,24, 1575 (1999).
    [39] S. Kuck, K. Petermann, and G. Huber, "Spectroscopicinvestigationof the Cr4+-center in YAG, " OSA Proceedings onAdvancedSolid-State Lasers, 10, 92 (1991).
    [40] Al. A. Kaminskii, " Laser crystal,"1st ed, Springer-VerlagBerlinHeidelberg New York, pp. 241, 381, 382 (1981).
    [41] S. Aoshima, H. Itoh, K. Kuroyanagi, Y. Takiguchi, Y.Ohbayashi, I.Hirano, and Y. Tsuchiya, " Tunablepicosecondall solid-state Cr:LiSAF laser, " IEEE, IMTC’94, 937 (1994).
    [42] Yen-KuangKuo, Man-Fang Huang, and Milton Bimbaum, "TunableCr4+:YSO Q-switched Cr:LiCAF laser," J. of QuantumElectron., 31, 657 (1995).
    [43] T. Fujii, M. Nagano, and K. Nemoto, "Spectroscope and laseroscillation characteristics of high Cr4+-doped forsterite, " J. of
    QuantumElectron., 32, 1497 (1996).
    [44] S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G.Huber,"Spectroscopic and laser studies of Cr4+:YAG andCr4+:Y2SiO5, " OSAProceedings on Advanced Solid-StateLasers, 15, 334 (1993).
    [45] Deer WA, Howie RA, Zussman J (1982) Rock Forming Minerals 2nded, vol 1 A, p 5, Longman, London
    [46] WeiyiJia,HuiminLiu,S.Jaffe,andW.M.Yen, "Spectroscope of Cr3+and Cr4+ ions in forsterite, " Physical Review B volume 43, Number 7 (1991)
    [47] 許峻揚,"高效率及低閥值摻鈦藍寶石晶體光纖雷射,"國立台灣大學電機資訊學院光電工程學研究所(2015)
    [48] N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung,T. Danger, S. Kück, K. Petermann, and G. Huber, " Excited-stateabsorption and stimulated emission measurements in Cr4+:forsterite, " J. of Lumin. 75, 319 (1997)
    [49] N. V. Kuleshov, A. V. Podlipensky, V. G. Shcherbitsky, A. A.Lagatsky, and V. P. Mikhailov,’’ Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite,’’ OPTICS LETTERS / Vol. 23, No. 13 / July 1(1998).
    [50] Jennifer L. Mass, James M. Burlitch,David E. Budil, Jack H. Freed,Duane B. Barber, Clifford R. Pollock, Mikio Hischi, and Rudiger Dieckmann , " Quenching of the Fluorescence from Chromium(III) Ions in Chromium-Doped Forsterite by an Aluminum Codopant "Chem. Mater1996, 7. 1008,1014 (1995)
    [51] G. Keiser, "Optical Fiber communications, 3rd ed, " McGraw-Hill,Ch. 2, Ch. 3 (2000).
    [52] BahaaE. A. Saleh,Malvin Carl Teich,” Fundamentals ofPhotonics,”ch3(1991)
    [53] https://en.wikipedia.org/wiki/Czochralski_process#cite_note-1
    [54] http://cnfolio.com/ELMnotes15
    [55] 李正中, "薄膜光學與鍍膜技術",第七版,藝軒出版社,2012
    [56] S. H. Lu, C. J. Chang, and C. F. Kao, “Full-field optical coherence tomography using immersion Mirau interference microscope,” Appl. Opt., vol. 52, no. 18, pp. 4400–4403, Jun. 2013.
    [57] H. Salem and S. A. Katz, Alternative Toxicological Methods. CRC Press, 2003.
    [58] H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, “Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm,” Phys. Med. Biol., vol. 51, no. 6, p. 1479, Mar. 2006.

    QR CODE