簡易檢索 / 詳目顯示

研究生: 趙冠博
Guan-Bo Jhao
論文名稱: 基於光學干涉之生物感測器
Biosensing through Optical Interference
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 許益誠
Yi-Cheng Shiu
江昌嶽
Chang-Yue Chiang
趙良君
Liang-Chiun Chao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 81(PDF)
中文關鍵詞: 生醫感測表面電漿共振掃頻式光學同調斷層掃描術光偵測器半導體製程
外文關鍵詞: Biosensing, Surface Plasmon Resonance, SPR, Swept-Source Optical Coherence Tomography, SS-OCT, PIN Photodetector, semiconductor fabrication
相關次數: 點閱:275下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生醫感測是目前世上不可或缺的重要技術,不只是生物體內的物質檢測與健康監測,外來的細菌與病,甚至是片段的DNA與RNA序列,都是生物感測技術活躍的範疇;當然感測技術不只活躍於微觀物質在量」捕捉,在生物組織方面,結合光的運用,捕捉「影像」,做到細微結構的觀察,也是生物感測的領域。而光學干涉就是其中一種廣泛運用於其中的基礎,光學干涉以光程差產生相位差,微小的相位變化,也能夠給予可觀的貢獻。
    其中之一應用光學干涉的生醫技術為表面電漿共振(Surface Plasmon Resonance, SPR)技術,輸入特 定光波長和特定角度,以橫向磁場(TM)模光激發SPR,不同的待測物折射率,會造成TM模光的相位改,而橫向電場 (TE)模光則未和金屬產生 SPR效應,因此合併後的 TE與 TM模 將有光程差,形成干涉譜來辨識微量待測物質達成0.178的論解析度與9.256×10−5的實驗靈敏度。
    在生醫影像辨識方面,將自製的P-I-N光偵測器(Photodetector, PD)運用於掃頻式光學同調斷層掃描術(Swept-Source Optical Coherence Tomography, SS-OCT)系統中,目標是完成SSOCT系統積體集成化。本論文著重研究於SS-OCT干涉端的光訊號接收,說明PD的運作原理以及商品化的製程步驟,完成達到響應度1以上的P-I-N PD元件再結合轉阻放大器 (Transimpedance Amplifier, TIA),來做干涉訊號的接收與放大,並與業界的Balanced Photo-Detector(BPD)做比較。


    Biomedical sensing is an essential and indispensable technology in the world, not only for material detection and health monitoring in living organisms but also for external bacteria and viruses and even for fragments of DNA and RNA sequences, which are all in the prevailing biosensing technologies. Besides the sensing technology capturing the "quantity" of microscopic substances, we can combine the use of light to form "images" for delicate structures observation, which is also a field of biological sensing. Optical interference is one of the widely used bases for biosensing technologies. Optical interference produces phase difference by optical path difference, and a small phase change can contribute considerably.
    One of the biomedical techniques for optical interference is Surface Plasmon Resonance (SPR), where a specific wavelength and angle of light are input to excite SPR with the transverse magnetic field (TM) mode light under various analytes. However, the transverse electric (TE) mode has no plasmon effect. Therefore, the combined TE and TM modes will differ in the optical range, forming an interference spectrum to identify the analyte quantitatively.
    In biomedical image recognition, a homemade P-I-N Photodetector (PD) is applied to the Swept-Source Optical Coherence Tomography (SS-OCT) system. This thesis focuses on the optical interferometric signal reception at the end of SS-OCT to demonstrate the operation principle of PD and the commercialization process steps. The Transimpedance Amplifier (TIA) is directly connected to PD for interferometric signal amplification. The commercial Balanced Photodetector (BPD) is utilized for the SS-OCT performance comparison.

    目錄 摘要 III Abstract IV 致謝 V 圖目錄 VIII 表目錄 XI 第一章 導論 1 1.1 緒論 1 1.2 光學干涉 3 1.3 研究背景 4 1.4 論文架構 6 第二章 光學干涉應用 SPR 7 2.1 表面電漿共振 7 2.1.1表面電漿波 7 2.1.2 激發表面電漿條件與稜鏡耦合 13 2.2 光學同調性 14 2.3 表面電漿共振生物感測器 16 2.3.1 生物感測器簡介 16 2.3.2 表面電漿生物感測器 17 2.3.3 靈敏度與解析度 18 2.4 窗口傅立葉轉換 19 第三章 光學干涉應用 SSOCT 22 3.1 SSOCT 22 3.2 光偵測器工作原理 24 3.3 p-i-n接面光二極體(p-i-n photodiode) 25 3.4 光偵測器設計參數 27 3.4.1 光偵測器材料 27 3.4.2 量子效率(Quantum Efficiency, QE) 28 3.4.3 響應速度(Response Speed) 29 3.4.4 響應度(Responsivity, R) 30 3.4.5 拒斥比(Rejection Ratio) 30 第四章 SPR 生物劑量感測 31 4.1 BK7金屬薄膜蒸鍍 31 4.2 實驗架構 33 4.3 實驗方法與流程 35 4.4 實驗結果 38 第五章 Photodiode製程及生物影像感測 40 5.1 PIN製程說明 40 5.1.1製程設計 40 5.1.2 PD晶圓半導體製程 43 5.1.3 PD晶片研磨製程 51 5.1.4 PD晶片切割製程 53 5.2光偵測器量測架構與數據 58 5.2.1光偵測器量測架構 58 5.2.2光偵測器量測結果 61 5.3影像量測架構與結果 63 第六章 結論與未來展望 65 參考文獻 66

    [1] V. Daeichin, K. Kooiman, I. Skachkov, J. G. Bosch, A. F. W. v. d. Steen, and N. d. Jong, “Optimization of ultrasound contrast agent for high frequency ultrasound molecular imaging using subharmonic oscillation,” IEEE International Ultrasonics Symposium, 3-6 Sept. 2014 2014, pp. 1766-1769, doi: 10.1109/ULTSYM.2014.0438, 2014.
    [2] P. J. L. Riviere, P. Vargas, G. Fu, and L. J. Meng, “Accelerating X-ray fluorescence computed tomography,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 3-6., pp. 1000-1003, doi: 10.1109/IEMBS.2009.5333568, Sept 2009.
    [3] J. Thomas Vaughan1,2, Carl Snyder', Lance DelaBarreI, Jinfeng TianI, Can Akgun1, Kamil Ugurbil1, Chris Olson2, Anand Gopinath2., “Current and Future Trends in Magnetic Resonance Imaging (MRI),” IEEE MTT-S International Microwave Symposium Digest, 11-16, pp. 211-212, doi: 10.1109/MWSYM.2006.249451, June 2006.
    [4] C. F. Beckmann and S. M. Smith, "Probabilistic independent component analysis for functional magnetic resonance imaging," (in eng), IEEE Transactions on Medical Imaging, vol. 23, no. 2, pp. 137-52, Feb 2004, doi: 10.1109/tmi.822821, 2003.
    [5] S. F. Silva, A. Batista, J. P. Domingues, M. J. Quadrado, and M. Morgado, “Fluorescence lifetime microscope for corneal metabolic imaging,” in 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG), 26-28, pp. 1-5, doi: 10.1109/ENBENG.2015.7088878, Feb 2015.
    [6] M. Rajadhyaksha, "Confocal microscopy of skin cancers: translational advances toward clinical utility," (in eng), Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2009, pp. 3231-3, doi: 10.1109/iembs.5333600, 2009.
    [7] D. G. Winters, J. Speirs, E. Block, R. A. Bartels, and J. A. Squier, "High-Speed Two-Dimensional Multiphoton Microscope using Spatial Modulation," in Conference on Lasers and Electro-Optics 2012, San Jose, California, Optical Society of America, in OSA Technical Digest, p. JW3G.1,. 2012/05/06
    [8] W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications. Springer Science & Business Media, 2008.
    [9] B. Kimbrough, J. Millerd, J. Wyant, and J. Hayes, "Low-coherence vibration insensitive Fizeau interferometer", SPIE Optics + Photonics, vol. 6292, p. 12, 2006.
    [10] N. Brock, J. Hayes, B. Kimbrough, J. Millerd, M. North-Morris, M. Novak, et al., "Dynamic interferometry", Optics and Photonics, vol. 5875, p. 10, 2005.
    [11] 林萱,”利用相位式表面電漿共振系統檢測免疫球蛋白鍵結之應用分析”,國立中央大學光電科學與工程學系,2012。
    [12] Fano, Ugo. "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)." JOSA 31.3: 213-222, (1941).
    [13] Wood, Robert Williams. "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4.21 396-402, (1902).
    [14] E. Krestschmann, "The determination of the optical constants of metals by excitation of surface plasmons", Z. Physik, vol. 241, p. 313, 1971.
    [15] Anna J. Tudos and Richard B.M. Schasfoort, "Handbook Of Surface Plasmon Resonance," 2007.
    [16] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Reports on progress in physics, vol. 66, no. 2, p. 239, 2003.
    [17] R. Leitgeb, C. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Optics express, vol. 11, no. 8, pp. 889-894, 2003.
    [18] J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev, vol. 108, pp. 462-493, 2008.
    [19] E. Krestschmann, "The determination of the optical constants of metals by excitation of surface plasmons", Z. Physik, vol. 241, p. 313, 1971.
    [20] 邱國斌與蔡定平,“金屬表面電漿簡介”,物理雙月刊,廿八卷二期,pp. 472-485,2006。
    [21] Kretschmann, E.; Raether, H. Z. Naturforsch, 2135-2136, 2135, 1968.
    [22] M. Takeda, H. Ina and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry", Journal of the Optical Society of America 72, pp. 56-160, 1982.
    [23] P. Hlubina a,b,*, M. Duliakova a, M. Kadulova a, D. Ciprian a,b, “Spectral interferometry-based surface plasmon resonance sensor,” Optics Communications 354 240–245, 2015.
    [24] Y. S. Wang, Shoou-Jinn Chang, Member, IEEE, C. L. Tsai, Meng-Chyi Wu, Yu-Zung Chiou, S. P. Chang, and W. Lin, “10-Gb/s Planar InGaAs P-I-N Photodetectors,” IEEE SENSORS JOURNAL, VOL. 10, NO. 10, OCTOBER 2010.
    [25] Yen-Tang Lyua, Kuo-Liang Jawa, Ching-Ting Leea,*, Chang-Da Tsaia, Yow-Jon Lina, Ya-Tung Cherng b, “Ohmic performance comparison for Ti/Ni/Au and Ti/Pt/Au on InAs/graded InGaAs/GaAs layers,” Materials Chemistry and Physics 63 122–126, 2000
    [26] Guifeng Chen1, Mengxue Wang1, 2, Wenxian Yang2, Ming Tan2, Yuanyuan Wu2, Pan Dai2, Yuyang Huang3, and Shulong Lu2, †, “Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors*,” Vol. 38, No. 12 Journal of Semiconductors, December 2017
    [27] Xiaowei Li, Student Member, IEEE, Ning Li, Xiaoguang Zheng, Stephane Demiguel, J. C. Campbell, Fellow, IEEE, David A. Tulchinsky, and Keith J. Williams, Member, IEEE, “High-Saturation-Current InP–InGaAs Photodiode
    With Partially Depleted Absorber,” IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 9, SEPTEMBER 2003
    [28] Shih-Hsiang Hsu', F. G. Johnson*, S. A. Tabatabaei', Sambhu Aganvala*, John V. Hryniewiczt, F. J. Townerl, Y. J. Chent, and D. R. Stone*, “InGaAs/InP p-i-n Heterostructure Photodiode Arrays on AlGaAs/GaAs Waveguide Films by Solid Source Molecular Beam Epitaxy,” IEEE, Volume 33, Issue 13, 19, p. 1171 – 1173, June 1997
    [29] A.R. Clawson*, “Guide to references on III±V semiconductor chemical etching,” Materials Science and Engineering, pp.1-438, 31 2001

    無法下載圖示 全文公開日期 2024/09/05 (校內網路)
    全文公開日期 2024/09/05 (校外網路)
    全文公開日期 2024/09/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE