簡易檢索 / 詳目顯示

研究生: Bernadeta Niken Kartika Dewi
Bernadeta - Niken Kartika Dewi
論文名稱: 以二甲基聯胺/三甲基銦/三乙基鎵有機金屬 化學氣相沉積系統低溫成長氮化銦鎵 一維奈米線之研究
Low Temperature Growth of InGaN Nanowires by TEGa/TMIn/DMHy MOCVD System
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 林麗瓊
Li-Chyong Chen
戴龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 75
中文關鍵詞: 氮化銦鎵奈米線有機金屬化學氣相沉積
外文關鍵詞: InGaN, Nanowires, MOCVD
相關次數: 點閱:309下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

關鍵字;氮化銦鎵、奈米線、有機金屬化學氣相沉積

本研究選用在低溫即具有分解能力的聯胺系列化合物-二甲基聯胺(DMHy)來取代反應性低的氨氣(NH3),同時以分解溫度較低之鎵源-三乙基鎵(TEGa)來與三甲基銦(TMIn)反應成長一維之氮化銦鎵奈米線,期望以TEGa-DMHy兩種較低溫度即可分解的先驅物組合,來大幅降低氮化銦鎵奈米線成長的溫度。由實驗結果發現,TEGa-TMIn-DMHy 系統可在450~600℃範圍內成功成長出氮化銦鎵奈米線於矽基板上,奈米線之銦(indium)含量及結晶品質明顯受到成長溫度、成長壓力、氣體氛圍與TMIn氣體流量之影響。經由TEM影像觀察證實奈米線為核殼(core-shell)結構,其成長方法為氣液固(VLS)的成長機制。進一步由TEM-EDX分析結果顯示,內部的核心組成為氮化銦鎵,外部包覆層組成為氮化鎵。光激發螢光光譜(PL)測量觀察到在467nm處和400nm處的發光分別對應氮化銦鎵-氮化鎵的核殼結構,核心的銦含量約為20%。預期此TEGa-TMIn-DMHy 系統應有機會能將氮化銦鎵奈米線成長在導電玻璃基板上,以利太陽能電池相關研究工作進行。


InGaN nanowires were synthesized on Si (111) by metalorganic vapor deposition (MOCVD) at temperatures lower than 600oC. Trimethylgallium, trimethylindium and dimethylhydrazine were employed as precursor which offer low temperature growth due to low thermal decomposition characteristics. This newly proposed reaction system has a great promise for energy application on soft substrates (such as ITO, AZO). Moreover, the effect of growth temperature, growth pressure, hydrogen gas ambient, and trimethylindium flow rate in InGaN growth were investigated.
InGaN nanowires were obtained at 450oC under hydrogen ambient with a TMIn flow rate of 1.42 µmol/min. TEM results show that the synthesized nanowires have core-shell structure. Indium localizes in the core and gallium in the shell was confirmed by EDX. PL spectra show emission at 467 and 400 nm corresponding to InGaN-GaN nanowires core-shell structures. The results also suggested that an indium content as ca. 20%. Further effort on looking for detailed phenomena in the formation of InGaN nanowires core-shell structure was also proposed.

Table of Content English Abstract I Chinese Abstract II Acknowledgement III Table of Content V List of Figure VIII List of Table XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Indium Gallium Nitride (InGaN) 2 1.3 Growth Method 4 1.3.1 Molecular Beam Epitaxy (MBE) 5 1.3.2 Hydride Vapor Phase Epitaxy (HVPE) 5 1.3.3 Metalorganic Chemical Vapor Deposition (MOCVD) 6 1.4 Reported Paper of InGaN growth 6 1.5 Challenges in InGaN growth 9 1.6 Low Temperature Growth 11 1.6.1 Advantage of low temperature growth 11 1.6.2 Precursor 12 1.7 One-Dimensional Nanomaterials 15 1.7.1 Synthesis of one-dimensional nanostructures 15 1.7.2 InGaN one-dimensional nanostructures 20 1.8 Motivation and Research Direction 21 Chapter 2 Experimental Method 22 2.1 Materials 22 2.1.1 Metalorganic precursors 22 2.1.2 Carrier and dilute gas 25 2.1.3 Chemical substances 25 2.2 Experimental Setup 26 2.2.1 Equipment 26 2.2.2 Methodology 27 2.3 Experimental Procedure 28 2.3 Characterization Instrumentation 29 2.3.1 Field Emission Scanning Electron Microscopy (FE-SEM) 29 2.3.2 Transmission Electron Microscopy (TEM) 30 2.3.3 X-Ray Diffraction (XRD) 31 2.3.4 Photoluminescence (PL) 32 2.3.5 X-Ray Photoelectron Spectroscopy (XPS) 33 Chapter 3 Result and Discussion 34 3.1. Effect of growth temperature on InGaN nanowires growth 34 3.1.1 Morphology of InGaN nanowires grown at various temperatures 36 3.1.2 Crystallinity of InGaN nanowires grown at various temperatures 38 3.1.3 Determination of indium composition in InGaN nanowires grown at various temperatures 40 3.2 Effect of growth pressure on InGaN nanowires growth 44 3.2.1 Morphology of InGaN nanowires grown at various pressures 46 3.2.2 Crystallinity of InGaN nanowires grown at various pressures 47 3.3 Effect of hydrogen dilution on InGaN nanowires growth 48 3.3.1 Morphology of InGaN nanowires grown at various hydrogen flow rates 50 3.3.2 Crystallinity of InGaN nanowires grown at various hydrogen flow rates 51 3.3.3 Determination of indium composition of InGaN nanowires grown at various hydrogen flow rates 52 3.4 Effect of TMIn flow rate on InGaN nanowires growth 54 3.4.1 Morphology of InGaN nanowires grown at various TMIn flow rates 56 3.4.2 Crystallinity of InGaN nanowires grown at various TMIn flow rates 58 3.4.3 Determination of indium composition of InGaN nanowires grown at various TMIn flow rates 59 3.5 Microstructure Characterization of InGaN nanowires 62 3.6 Optical Properties of InGaN nanowires 65 Chapter 4 Conclusion and Outlook 68 References 69 Appendix A 75

1. S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys., 34, L687 (1995)
2. S. Nakamura, M. Senoh, S. Naghama, N. Iwasa, T. Yamada, T. Matshuista, and H. Kiyoku, Jpn. J. Appl. Phys., 35, 74 (1996)
3. A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, S. Kakenka and H. Temkim, Appl. Phys. Lett., 71, 2334 (1997)
4. W. Yang, T. Nohava, S. Krishnankntty, R. Torreano, S. Mcpherson and H. Marsh, Appl. Phys. Lett., 73, 1086 (1998)
5. O. Jani, I. Ferguson, C. Honsberg, S. Kurtz, Appl. Phys. Lett., 91, 132117 (2007)
6. C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars and U. K. Mishra, Appl. Phys. Lett., 93, 143502 (2008)
7. X. Chen, K. D. Matthews, D. Hao, W. J. Schaff, and L. F. Eastman, Phys. Stat. Sol. (a), 205, 1103 (2008)
8. Junqiao Wu, J. Appl. Phys., 106, 011101 (2009)
9. E. F. Schubert, Light Emitting Diode, Cambridge University Press, United Kingdom, 2006
10. Fernando Rinaldi, Basic of Molecular Beam Epitaxy, Annual Report 2002, Optoelectronics Department, University of Ulm
11. M. J. Paisley, R. F. Davis, J. Cryst. Growth, 127, 136 (1993) and references therein, D. B. Oberman, H. Lee, W. Gotz, J. S. K. Harris, J. Cryst. Growth, 150, 912 (1995)
12. M. J. Paisley, Z. Sitar, J. B. Posthill, R. F. Davis, J. Vac. Sci. Technol., A7, 701 (1989)
13. R. C. Powell, N. E. Lee, Y. W. Kim, J. E. Greene, J. Appl. Phys., 73, 189 (1993), R. C. Powell, G. A. Tomasch, Y. W. Kim, J. A. Thornton, E. Greene, J. Mater. Res. Symp. Proc., 162, 525 (1990)
14. V. Dmitriev and A. Usikov, Technologies and Device International, Inc
15. Marc Madou, Fundamental of Microfabrication, CRC Press, New York, (1997)
16. Burggraaf, P. The Status of MOCVD Technology, Semiconductor. Int., 16, 80-83, (1993)
17. D. Doppalapudi and S. N. Basu, K. F. Ludwing, Jr., and T. D. Moustakas, J. Appl. Phys., 84, 1389 (1998)
18. M. H. Kim, J. K. Cho, I. H. Lee, S. J. Park, Phys. Stat. Sol. (a), 176, 268, (1999)
19. M. Kurouchi, T. Yamaguchi, H. Naoi, A. Suzuki, T. Araki, and N. Nanishi, J. Cryst. Growth, 275, e1053 (2005)
20. S. Hirano et al., J. Cryst. Growth, 301, 513 (2007)
21. K.M. Wu, Y. Pan, C. Liu, Appl. Surf. Sci., 255, 6705 (2009)
22. S. Nakamura, T. Mukai, and M. Senoh, J. Appl. Phys., 71, 5543 (1992)
23. N. Takahashi et al., J. Cryst. Growth, 189, 37 (1998).
24. H. M. Kim, H. Lee, S. I. Kim, S.R. Ryu, T. W. Kang, and K. S. Chung, Phys. Stat. Sol. (b), 241, 2802 (2004)
25. P. Yang, T. Kuykendall, P. Ulrich, S. Aloni, Nature Material, 6, 951 (2007)
26. C. A. Chang, C. F. Shih, N. C. Chen, T. Y. Lin, K. S. Liu, Appl. Phys. Lett., 85, 6131 (2004)
27. K. Poochinda, T. C. Chen, T. G. Stoebe, N. L. Ricker, J. Cryst. Growth, 272, 460 (2004)
28. Wang et al., J. Appl. Phys., 102, 106105 (2007)
29. P. F. Yang, S. R. Jian, Y. S. Lai, C. S. Yang, R. S. Chen, J. Alloys and Comp., 463, 533 (2008)
30. B. N. Phanta, J. Li, J. Y. Lin, H. X. Jiang, Appl. Phys. Lett., 93, 128107 (2008)
31. F. Ye, X. M. Cai, X. M. Wang, E. Q. Xie, J. Cryst. Growth, 304, 333 (2007)
32. C. W. Hsu, A. Ganguly, C. H. Liang, Y. T. Hung, C. T. Wu, G. M. Hsu, Y. F. Chen, C. C. Chen, K. H. Chen, L. C. Chen, Adv. Func. Mater., 18, 938 (2008)
33. I. Ho, G.B. Stringfellow, Appl. Phys. Lett., 69 2701 (1996)
34. N. Yoshimoto, T. Matsuoka, T. Sasaki, A. Katsu, Appl. Phys. Lett., 59 2251 (1991)
35. E.L. Piner, F.G. McIntosh, J.C. Roberts, M.E. Aumer, V.A. Joshkin, S.M. Bedair, N.A. El-Masry, MRS Internet J. Nitride Semicond. Res., 1, 43(1996)
36. T. Nagatomo, T. Kuboyama, H. Minamino, O. Omoto, Japan J. Appl. Phys., 28, L1334 (1989)
37. D. J. Kim, Y. T. Moon, I. H. Lee, S. J. Park, J. Electron. Mater., 30, 99 (2001)
38. S. C. Jain, M. Willander, J. Narayan, R. Van Straeten, J. Appl. Phys., 87, 965 (2000)
39. T. C. Fu, N. Newman, E. Jones, J. S. Chan, X. Liu, M. D. Rubin, N. W. Cheung, and E. R. Weber, J. Electron. Mater., 24, 249 (1995)
40. M. Kurouchi, T. Yamaguchi, H. Naoi, A. Suzuki, T. Araki, Y. Nanishi, J. Cryst. Growth, 275, e1053 (2005)
41. I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, J. Cryst. Growth, 98, 209 (1989)
42. E. Bourret-Courchesne, Q. Ye, D. W. Peters, J. Arnorld, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith, S. A. Rushworth, J. Cryst. Growth, 217, 47 (2000)
43. T. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Katsui, J. Electron. Mater., 21, 157 (1992)
44. Bloem 1973; Stringfellow 1980
45. S. S. Liu, D. A. Stevenson, J. Electrochem. Soc., 125, 1161 (1978), Z. J. Yu, J. H. Edgar, A. U. Ahmed, A. Rys,. J. Electrochem. Soc., 138, 196 (1991)
46. F. Bozo, P. Avouris, Phys. Rev. Lett., 57, 1185 (1986). (b) F. Bozo, P. Avouris, Phys. Rev. B, 38, 3937 (1988), X. L.Zhou, C. R. Flores, J. M. White, Surf. Sci. Lett., 268, L267 (1992)]
47. S. S. Liu and D. A. Stevenson, J. Electrochem. Soc.,125, 1161 (1978)
48. S. Fujieda, M. Mizuta, and Y. Matsumoto, Jpn. J. Appl. Phys., 26, 2067 (1987)
49. Z. Liu, R. T. Lee, and G. B. Stringfellow, J. Cryst. Growth, 191, 1 (1998)
50. S. Nishide, T. Yoshimura, Y. Takamatsu, A. Ichige, K. Pak, N. Ohshima, and H. Yonezu, J. of Crystal Growth, 189/190, 325 (1998)
51. R. T. Lee and G. B. Stringfellow, J. Crystal Growth, 204, 247 (1999)
52. E. Bourret-Courchesne, Q. Ye, D. W. Peters, J. Arnold, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith, and S. A. Rushworth, J. Cryst. Growth, 191, 1 (1998)
53. Blaauw, C., J. Electrochem. Soc., 131, 1114 (1984)
54. Deborah A. Neumayer and John G. Ekerdt, Chem. Mater., 8, 9 (1996)
55. E. Bourret-Courchesne, Q. Ye, D. W. Peters, J. Arnorld, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith, S. A. Rushworth, J. Cryst. Growth, 217, 47 (2000)
56. S. Miyoshi, K. Onabe, N. Ohkouchi, and H. Yaguchi, R. Ito, J. Cryst. Growth, 124, 439 (1992)
57. H. Sato, H. Takahashi, A. Watanabe, and H. Ota, Appl. Phys. Lett., 68, 3617 (1996)
58. J. Wu, H. Yaguchi, H. Nagasawa, Y. Yamaguchi, K. Onabe, Y. Shiraki, and R. ITO, Jpn. J. Appl. Phys., 36, 4241 (1997)
59. Y. Kobayashi, F. Scholz, and N. Kobayashi, Jpn. J. Appl. Phys., 36, 2592 (1997)
60. J. Wu, H. Yaguchi, H. Nagasawa, K. Onabe, Y. Shiraki, and R. ITO, Jpn. J. Appl. Phys., 37, 1440 (1998)
61. E. D. Bourret-Courchesne, Q. Ye, K. M. Wu, and J. W. Ager III, J. Cryst. Growth, 231, 89 (2001)
62. Y. J. Hsu, L. S. Hong, K. F. Huang and J. E Tsay, Thin Solid Films, 419, 33 (2002)
63. J. Sormunen, J. Toivonen, M. Sopanen, and H. Lipsanen, Appl. Surf. Sci., 222, 286 (2004)
64. E. H. Park, J. S. Park, and T. K. Yoo, J. Cryst. Growth, 272, 426 (2004)
65. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89(1964)
66. S. K. Lee et al., Phys. Stat. Sol. (b), 241, 2775 (2004)
67. M. Volmer and I. Esterman, Z. Phys., 7, 13 (1921)
68. H. Chik and J. M. Xu, Mater. Sci. and Eng. R, 43 (2004) 103–138
69. Q. B. Wu, S. Ren, S. Z. Deng, J. Chen, and N. S. Xu, J. Vac. Sci. Technol. B, 223, (2004)
70. X. Peng, J. Wickham, and A. P. Alivisatos, J. Am. Chem. Soc., 120, 5343 (1998)
71. A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, and R.E. Smalley, Science, 273, 483 (1996)
72. R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Mater., 15, 635 (2003)
73. C. C. Chen, C. C. Yeh, Adv.Mater., 12, 738 (2000), C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, Y. F. Chen, Appl. Phys. Lett., 81, 22 (2002)
74. http://www.safcglobal.com/safc-hitech/en-us/home/overview/products/gallium/trimethylgallium.html
75. A. H. McDaniel and M. D. Allendorf, Chem. Mater., 12, 450 (2000)
76. http://www.safcglobal.com/safc-hitech/en-us/home/overview/products/indium/trimethylindium.html
77. http://www.safcglobal.com/safc-hitech/en-us/home/overview/products/nitrogen/1-1-dimethylhyrazine.html
78. Deli Wang et al., Nano Lett., 8, 3755 (2008)
79. Cullity, B. D. and S. R. Stock, Elements of X–Rays Diffraction, 3rd edition, Prentice Hall, New Jersey (2001)
80. John F. Watts and John Wolstenholme, An Introduction to surface analysis by XPS and AES, , John Wiley & Sons Ltd, England (2003)
81. Y. Guo, X. L. Liu, H. P. Song, A. l. yang, X. Q. Xu, G. L. Zheng, H. Y. Wei, S. Y. Yang, Q. S. Zhu, Z. G. Wang, Appl. Surf. Sci., article in press (2009)
82. D. Kashchinev, Cryst. and Design, 6, 1154 (2006)
83. S. A. Dayeh, C. Soci, X. Y. Bao, D. Wang, Nano Today, 4, 347 (2009)
84. R. L Snyder, J. Viala, H. J. Bunge, Defect and Microstructure Analysis by diffraction, Oxford University Press (1999)
85. D. Doppalapudi, J. of Appl. Phys., 84, 1389 (1998)
86. R.A. Oliver, M.J. Kappers, C.J. Humphrey, G.A.D. Briggs, J. Cryst. Growth, 273 393 (2004)
87. Y. Park and D. Pavlidis, J. Electron. Mater., 25, 1554 (1996)
88. D. F. Storm, C. Adelmann, and B. Daudin, Appl. Phys. Lett., 79, 1614 (2001)
89. E. L. Piner, M. K. Behbehani, N. A. El-Masry, Appl. Phys. Lett., 71, 14 (1997)
90. T. Matsuoka, N. Yoshimoto, T. Sasaki, A. Katsui, J. Electron. Mater., 21, 157 (1992), S. Keller, S. F. Chichibu, M. S. Minsky, E. Hu, U. K. Mishra, S. P. Den Baars, J. Cryst. Growth, 195, 285 (1998)
91. A. P. Vajpeyi, A. O. Ajaguna, K. Tsagaraki, M. Androulidraki, A. Georgakilas, Nanotechnology, 20, 325605 (2009)
92. P. Viste, I. Colombier, F. Donatini, J. C. Vial, P. Baldeck, R. Herino, J. Cryst. Growth, 272, 466 (2004)

無法下載圖示 全文公開日期 2015/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE