簡易檢索 / 詳目顯示

研究生: 林政明
Cheng-ming Lin
論文名稱: 以有機金屬化學氣相沉積法共沉積鉑-釕觸媒於一維氮化銦奈米帶上之研究
Fabrication and characterization of Pt-Ru catalysts codeposited on one dimensional InN nanobelts
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 林麗瓊
Li-Chyong Chen
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 137
中文關鍵詞: 化學氣相沉積共沉積氮化銦奈米帶雙金屬觸媒循環伏安圖譜直接甲醇燃料電池
外文關鍵詞: chemical vapor deposition (CVD), codeposition, InN nanobelts, bimetal catalysts, cyclic voltammogram (CV), direct methanol fuel cell (DMFC)
相關次數: 點閱:285下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用具有大表面積及優越導電性的一維氮化銦(InN)奈米帶作為以化學氣相沉積法共沉積Pt-Ru雙金屬觸媒的模版,探討觸媒沉積後的組成、形態,及其電化學性質,期待作為直接甲醇燃料電池中陽極觸媒方面的應用。首先,純N2氣氛下的沉積結果發現觸媒隨著沉積時間增加而有較好的披覆性,經H2氣氛退火後,Ru將由氧化態轉變為金屬態,並提升奈米帶電極的催化活性。之後,使用混合氣體H2與N2作為稀釋氣體共沉積Pt-Ru,發現Ru大都以金屬態的形式存在,且可觀察到雙觸媒均勻分布沉積在InN奈米帶表面。由X光繞射圖配合電化學結果,顯示以(111)為擇優成長晶面的Pt-Ru雙觸媒有效促使甲醇進行氧化反應。由改變Ru進料濃度的實驗,確實證明所沉積之Pt-Ru雙觸媒為合金態結構。最後在純H2氣氛的沉積結果顯示,隨著沉積時間增加,愈有助於Pt-Ru合金的(111)晶面形成。如沉積120分鐘後的試片的循環伏安圖譜,能在0.442 V的驅動電位下,表現出60.47 mA/cm2的極大催化電流密度及3.53倍的陽極正逆掃描電流比,說明以(111)為擇優晶面的Pt-Ru雙觸媒合金提供了甲醇氧化的最適當催化位置。


    One dimensional (1-D) InN nanobelts with large surface area and high conductivity were used as templates for the codeposition of Pt-Ru bimetal catalysts by metal organic chemical vapor deposition (MOCVD) technique. The chemical composition, morphology and electrochemical characteristics that applicable for the anode electrode in direct methanol fuel cell (DMFC) were also investigated. Firstly, increasing catalyst coverage was found under pure N2 deposition atmosphere when the deposition time was raised. After annealing in H2 ambiance, metallic Ru was transformed from oxidation state, and the catalytic activity of nanobelt electrode was improved. It was found that Ru existed as metallic state on the surface of InN nanobelts when Pt-Ru catalysts were codeposited uniformly in a mixed stream of H2 and N2. Cyclic voltammogram (CV) with respect to methanol showed that (111) preferred oriented Pt-Ru on InN nanobelts exhibited the most efficient methanol oxidation characteristics. Pure H2 reaction atmosphere was found to favor the formation of (111) preferred oriented Pt-Ru alloy layer on InN nanobelts. High catalytic current of 60.47 mA/cm2 and If/Ib ratio (the ratio of forward anodic peak current density (If) to the reverse anodic peak current density (Ib)) of 3.53 were obtained, suggesting the potential of adopting Pt-Ru/InN nanobelts system for DMFC application.

    中文摘要………………………………………………………….……I英文摘要……………………………………………………………II 目錄…………………………………………………………………III 圖索引…………………………………………………………………VI 表索引………………………………………………………………XV 第一章 緒論…………………………………………………………1 1.1 研究背景…………………………………………………………1 1.2 燃料電池簡介……………………………………………………3 1.3 釕與鉑的晶體結構…………………………………………………8 1.4 Pt-Ru電化學觸媒特性……………………………………………9 1.5 研究動機與目的…………………………………………………14 第二章 實驗方法及分析儀器………………………………………18 2.1 實驗材料及藥品…………………………………………………...18 2.2 實驗設備…………………………………………………………28 2.2.1 實驗裝置及方法………………………………………………28 2.3 分析儀器………...…………………………………………………30 2.3.1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) …30 2.3.2 穿透式電子顯微鏡(Transmission Electron Microscope, TEM)...........................................................................................31 2.3.3 化學分析電子光譜 / X-光 光電子能譜儀(Electron Spectroscopy for Chemical Analysis, ESCA / X-ray Photoelectron Spectroscope, XPS) ……………………………32 2.3.4 X光繞射分析儀(X-ray Diffraction Spectrometer) …………34 2.3.5 電化學分析儀器………………………………………………35 2.4 實驗流程…………………………………………………………37 2.4.1 鉑、釕觸媒沉積步驟…………………………………………38 2.4.2 試片特性分析…………………………………………………38 2.4.3 製備Pt-Ru/InN電極…………………………………………39 2.4.4 循環伏安法燃料測試…………………………………………39 第三章 結果與討論…………………………………………………42 3.1 於純N2氣氛下Pt-Ru金屬於InN奈米帶上的異質氣相沉積…….42 3.1.1 不同Pt-Ru共沉積時間的效應………………………………42 3.1.2 於H2氣氛下作退火處理對Pt-Ru/InN奈米帶之影響………60 3.2 於H2及N2混合氣氛下Pt-Ru金屬的異質氣相沉積……………70 3.2.1 改變稀釋氣體H2與N2的比例對 Pt-Ru/InN奈米帶的影 響………………………………………………………………70 3.2.2 改變Ru於二元金屬合金中比例,對沉積形態、結構及電化學 特性的影響……………………………………………………84 3.3 於純H2氣氛下Pt-Ru金屬於InN奈米帶上的異質氣相沉積…….94 3.3.1 不同Pt-Ru共沉積時間的效應………………………………94 3.3.2 使用Ar+離子轟擊(Ar+ ion bombardment)後,對Pt-Ru/InN奈 米帶形態與組成的影響……………………………………116 第四章 結論…………………………………………………………126 參考文獻………………………………………………………………129

    1. 陳振源,”未來的綠色能源─燃料電池”,科學發展雜誌391期,2005年
    2. B. C. H. Steele and A. Heinzel, Nature, 414, 345 (2001)
    3. 陳陵援、林修正,”燃料電池中的觸媒”,科學發展雜誌, 370期,2003年
    4. 楊志忠、林頌恩、韋文誠,”燃料電池的發展現況”,科學發展雜誌367期,2003年
    5. A. K. Shukla, R.K. Raman, Annu. Rev. Mater. Res., 33, 155–68 (2003)
    6. 譚小金,”直接甲醇燃料電池關鍵材料-正負極觸媒的技術發展現況”, ITIS專欄, 2004年
    7. S. D. Lin, T. C. Hsiao, J. R. Chang, A. S. Lin, J. Phys. Chem. B, 103, 97-103 (1999).
    8. Weijiang Zhou, Zhenhua Zhou, Shuqin Song, Wenzhen Li, Gongquan Sun, Panagiotis Tsiakaras, Qin Xin, Appl. Cat. B: Environmental, 46, 273–285 (2003).
    9. Y. J. Zhang , A. Maroto-Valiente, I. Rodriguez-Ramos, Qin Xin, A. Guerrero-Ruiz, Cat. Today, 93–95, 619–626 (2004).
    10. L. X. Yang, R. G. Allen, K. Scott, P. Christensen, S. Roy, J. Fuel Cell Science nd Technology, 2, 104-110 (2005).
    11. H. B. Suffredini, V. Tricoli b, L. A. Avaca a, N. Vatistas, Electrochemistry Communications, 6, 1025–1028 (2004).
    12. Dianxue Cao, Steven H. Bergens, Journal of Power Sources, 134, 170–180, (2004)
    13. H. Mercedes Villullas, Flora I. Mattos-Costa, Luis O. S. Bulhoes, J. Phys. Chem. B, 108, 12898-12903 (2004).
    14. Z. U. Chen, X. P. Qiu, B. Lu, S. H. Zhang, W. T. Zhu, L. Q. Chen, Electrochemistry Communications, 7, 593–596 (2005)
    15. M. Go tz, H. Wendt, Electrochimica Acta, 43, No. 24, 3637±3644 (1998).
    16. W. J. Zhou, W. Z. Li, S. Q. Song, Z. H. Zhou, L. H. Jiang , G. Q. Sun, Q. Xin, K. Poulianitis, S. Kontou, P. Tsiakaras, J. of Power Sources, 131, 217–223 (2004).
    17. W. J. Zhou, S. Q. Song, W. Z. Li, G. Q. Sun, Q. Xin, S. Kontou, K. Poulianitis, P.Tsiakaras, Solid State Ionics, 175, 797–803 (2004).
    18. S. Mylswamy, C. Y. Wang , R. S. Liu, J. F. Lee, M. J. Tang, J. J. Lee, B. J. Weng, Chemical Physics Letters, 412, 444–448 (2005).
    19. W. J. Zhou, S. Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xin, S. Douvartzides, P. Tsiakaras, Journal of Power Sources, 40, 50–58 (2005).
    20. N. Alonso-Vante, H. Tributch, O. Solorza-Feria, Electrochim. Acta , 40, 567 (1995).
    21. N.Alonso-Vante, O. Savadogo, P. R. Roberge, T. N. Veziroglu, Proceedings of the First International Symposium on Materials for Fuel Cells System, p.658 (1995).
    22. J. M. Ziegelbauer, Y. Garsany, S. Mukejee, Meeting Abstracts, 2004 Joint International Meeting - 206th Meeting of the Electrochemical Society/2004 Fall Meeting of the Electrochemical Society of Japan, MA 2004-02, 1509 (2004).
    23. J. Bentley, R. Derby, Ethanol and Feul Cells: Converging paths of Poportunity, report for the Renewable Fuels Association, 2002
    24. N. Takezawa, N. Iwasa, Catal. Today 36, 45 (1997).
    25. F. J. Marino, E. G. Cerrela, S. Duhalde, M. Jobbagy, M. A. Laborde, Int. J. Hydrogen Energy, 12, 1095 (1998).
    26. F. J. Marino, M. Boveri, G. Baronetti, M. Laborde, Int. J. Hydrogen Energy, 26 665 (2001).
    27. E.Y. Garcia, M.A. Laborde, Int. J. Hydrogen Energy, 16, 307 (1991).
    28. S. Freni, N. Mondello, S. Cavallaro, G. Cacciola, V.N. Parmon, V.A. Sobyanin, React. Kinet. Catal. Lett., 71, 143 (2000).
    29. V. V. Galvita, G. L. Semin, V. D. Belyaev, V. A. Semikolenov, P. Tsiakaras, V. A. Sobyanin, Appl. Catal. A: Gen. 220, 123 (2001).
    30. A. N. Fatsikostas, D. I. Kondarides, X. E. Verykios, Chem. Commun., 851 (2001).
    31. S. Cavallaro, N. Mondello, S. Freni, J. Power Sources, 102, 198 (2001).
    32. A. N. Fatsikostas, D. I. Kondarides, X. E. Verykios, Catal. Today, 75, 145 (2002).
    33. J. P. Breen, R. Burch, H. M. Coleman, Appl. Catal. B: Environ., 39, 65 (2002).
    34. J. Llorca, N. Homs, J. Sales, P. R. de la Piscina, J. Catal., 209, 306 (2002).
    35. M. A. Goula, S. K. Kontou, P. E. Tsiakaras, Appl. Catal. B: Environ., 49, 135 (2004).
    36. A. N. Fatsikostas, X. E. Verykios, J. Catal., 225, 439 (2004).
    37. S. Wasmus, A. Kuver, “Methanol oxidation and direct methanol fuel cells: a selective review”, J. of Electro. Chem., 461, pp.14 (1999).
    38. H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, David P. Wilkinson, “A review of anode catalysis in the direct methanol fuel cell”, J. of Power Sources, 155, pp.95 (2006).
    39. E. V. Spinac, A. O. Neto, T. R. R. Vasconcelos, M. Linardi, “Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process”, Journal of Power Sources, 137, 17 (2004).
    40. T. C. Deivaraj, J. Y. Lee, “Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications – a comparative study”, Journal of Power Sources, 142, 43 (2005).
    41. L. Jiang, G. Sun, X. Zhao, Z. Zhou, S. Yan, S. Tang, G. Wang, B. Zhou, Q. Xin, “Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells”, Electrochimica Acta, 50, 2371 (2005).
    42. Z. B. Wang, G. P. Yin, P. F. Shi, “Effects of ozone treatment of carbon support on Pt–Ru/C catalysts performance for direct methanol fuel cell”, Carbon, 44, 133 (2006).
    43. E. V. Spinac, A. O. Neto, M. Linardi, “Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles”, Journal of Power Sources, 129, 121 (2004).
    44. M. Watanabe, S. Motoo, “Electrocatalysis by ad-atoms PartII. Enhancement of the Oxidation of Methonal on Platinum by Ruthenium ad-atoms”, Electroanalytical Chemistry and Interfacial Electrochemistry, 60, 267 (1975).
    45. T. Frelink, W. Visscher, J.A.R. van Veen, “On the role of Ru and Sn as promotos of methanol”, Surface Science, 335, 353 (1995).
    46. T. Frelink, W. Visscher, J. A. R. van Veen, “Measurement of the Ru Surface Content of Electrocodeposited PtRu Electrodes with the Electrochemical Quartz Crystal Microbalance: Implications for Methanol and CO Electrooxidation”, Langmuir, 12, 3702 (1996).
    47. H. A. Gasteiger, N. MarkoviC, P. N. Ross, Jr., E. J. Cairns, “CO Electrooxidation on Well-Characterized Pt-Ru Alloys”, J. Phys. Chem., 98, 617 (1994).
    48. A. Kabbabi, R. Faure, R. Durand, B. Beden , F. Hahn, J.-M. Leger , C. Lamy, “In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes”, Journal of Electroanalytical Chemistry, 444, 41 (1998).
    49. S. T. Kuk, A. Wieckowski, “Methanol electrooxidation on platinum spontaneously deposited on unsupported and carbon-supported ruthenium nanoparticles”, Journal of Power Sources, 141, 1 (2005).
    50. K. Sasaki , J. X. Wang , M. Balasubramanian , J. McBreen, F. Uribe , R. R. Adzic, “Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability”, Electrochimica Acta, 49, 3873 (2004).
    51. S. R. Brankovic, J. X. Wang, R. R. Adzˇic, “Pt Submonolayers on Ru Nanoparticles A Novel Low Pt Loading, High CO Tolerance Fuel Cell Electrocatalyst”, Electrochemical and Solid-State Letters, 4, A217 (2001).
    52. S. R. Brankovic, J. McBreen, R. R. Adzˇic, “Spontaneous deposition of Pt on the Ru(0001) surface”, Journal of Electroanalytical Chemistry, 503, 99 (2001).
    53. A. A. El-Shafei, R. Hoyer, L. A. Kibler, D. M. Kolb, “Methanol Oxidation on Ru-Modified Preferentially Oriented Pt Electrodes in Acidic Medium”, Journal of The Electrochemical Society, 15, F141 (2004).
    54. P. Waszczuk, G.-Q. Lu, A. Wieckowski, C. Lub, C. Rice, R. I. Masel, “UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis”, Electrochimica Acta, 47, 3637 (2002).
    55. A. Lamouri, Y. Gofer, Y. Luo, G. S. Chottiner, D. A. Scherson, “Low-Energy Electron Diffraction, X-ray Photoelectron Spectroscopy, and CO-Temperature-Programmed Desorption Characterization of Bimetallic Ruthenium-Platinum Surfaces Prepared by Chemical Vapor Deposition”, J. Phys. Chem.,B, 105, 6172 (2001).
    56. T. D. Jarvi, T. H. Madden, E. M. Stuve, “Vacuum and Electrochemical Behavior of Vapor Deposited Ruthenium on Platinum (111)”, Electrochemical and Solid-State Letters, 2, 224 (1999).
    57. G. Tremiliosi-Filho, H. Kim, W. Chrzanowski, A. Wieckowski, B. Grzybowska, P. Kulesza, “Reactivity and activation parameters in methanol oxidation on platinum single crystal electrodes ‘decorated’ by ruthenium adlayers”, Journal of Electroanalytical Chemistry, 467, 143 (1999).
    58. J. W. Long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, “How To Make Electrocatalysts More Active for Direct Methanol OxidationsAvoid PtRu Bimetallic Alloys!”, J. Phys. Chem. B, 104, 9772 (2000).
    59. H. M. Villullas, F. I. Mattos-Costa, L. O. S. Bulho˜es, “Electrochemical Oxidation of Methanol on Pt Nanoparticles Dispersed on RuO2”, J. Phys. Chem. B, 108, 12898 (2004).
    60. L. X. Yang, R. G. Allen, K. Scott, P. A. Christenson, S. Roy, “A study of PtRuO2 catalysts thermally formed on titanium mesh for methanol oxidation”, Electrochimica Acta, 50, 1217 (2005).
    61. Z. Chen, X. Qiu, B. Lu, S. Zhang, W. Zhu, L. Chen, “Synthesis of hydrous ruthenium oxide supported platinum catalysts for direct methanol fuel cells”, Electrochemistry Communications, 7, 593 (2005).
    62. K. C. Kwiatkowski, S. B. Milne, S. Mukerjee, C. M. Lukehart, “Synthesis of Pt–Mo/Carbon Nanocomposites from Single-Source Molecular Precursors: A (1:1) PtMo/C PEMFC Anode Catalyst Exhibiting CO Tolerance”, Journal of Cluster Science, 16, 251 (2005).
    63. S. Zafeiratos, G. Papakonstantinou, M. M. Jacksic, S. G. Neophytides, “The effect of Mo oxides and TiO2 support on the chemisorption features of linearly adsorbed CO on Pt crystallites: an infrared and photoelectron spectroscopy study”, Journal of Catalysis, 232, 127 (2005).
    64. K. Waki, K. Matsubara, K. Ke, Y. Yamazaki , “Self-Organized Pt/SnO2 Electrocatalysts on Multiwalled Carbon Nanotubes”, Electrochemical and Solid-State Letters, 8, A489 (2005).
    65. L. X. Yang, C. Bock, B. MacDOUGALL, J. Park, “The role of the WOx ad-component to Pt and PtRu catalysts in the electrochemical CH3OH oxidation reaction”, Journal of Applied Electrochemistry, 34, 427 (2004).
    66. Zhibin He, Jinhua Chen, Dengyou Liu, Hao Tang, Wei Deng, Yafei Kuang, Materials Chemistry and Physics, 85, 396 (2004).
    67. Chan Kim, Yong Jung Kim, Yoong Am Kim, Takashi Yanagisawa, Ki Chul Park, Morinobu Endo, Mildred S. Dresselhaus, Journal of applied physics, 99, no.10, 5903 (2004).
    68. G. –Y. Zhao, C. –L. Xu, D. –J Guo, H. –L. Li, J. of Power Sources, 162, 492 (2006).
    69. C. L. Sun, L. C. Chen, M. C. Su, L. S. Hong, O. Chyan, C. Y. Hsu, K. H. Chen, T. F. Chang, and L. Chang, Chem. Mater. 17, 3749 (2005).
    70. 胡銘顯,”低維光電晶體的合成與特性分析”,台灣科技大學化學工程研究所博士論文,中華民國95年4月。
    71. M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, Adv. Funct. Mater., 16, 537 (2006).
    72. T. M. Miller, A. N. Izumi, Y. S. Shih, and G. M. Whitesides, J. Am. Chem. Soc., 110, 3146 (1988).
    73. T. M. Miller, T. J. McCarthy, and G. M. Whitesides, J. Am. Chem. Soc., 110, 3156 (1988).
    74. T. M. Miller and G. M. Whitesides, J. Am. Chem. Soc., 110, 3164 (1988).
    75. Z. Xue, H. Thridandam, H. D. Kaesz, and R. F. Hicks, Chem. Mater., 4, 162 (1992).
    76. 鄭維元,”鉛系鐵電材鋯鈦酸鉛膜層的化學氣相沉積相關之研究”,台灣科技大學化學工程研究所博士論文,93年10月。
    77. Allen. J. Bard and Larry R. Faulkner, “electrochemical methods fundamentals and applications, 2nd edition”, WILEY, pp.226.
    78. M. Saito, H. Shiroishi, C. Ono, S. Tsuzuki, T. Okada, Y. Uchimoto, J. of Molecular Cat. A: Chemical, 248, n 1, 99 (2006).
    79. S. –F. Huang. Y. Chi. C. –S. Liu, A. J. Carty, K. Mast, C. Bock, B. MacDougall, S. –M. Peng and G. –H. Lee, Chemical Vapor Deposition, 9, 157 (2003).
    80. M. -S. Lffler, H. Natter, R. Hempelmann, K. Wippermann, Electrochimica Acta, 48, 3047 (2003).

    QR CODE