簡易檢索 / 詳目顯示

研究生: 蔡少桓
Shao-Huan Tsai
論文名稱: 以遞迴最小平方法結合無跡卡爾曼濾波器實現超級電容參數、充電狀態、健康狀態及溫度之即時估測
Real-time Estimation of Ultracapacitor Parameters, State of Charge, State of Health and Temperature based on Recursive Least Square Method and Unscented Kalman Filter
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 蘇裕軒
Yu-Hsuan Su
陳亮光
Liang-kuang Chen
姜嘉瑞
Chia-Jui Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 157
中文關鍵詞: 超級電容即時估測無跡卡爾曼濾波器遞迴最小平方法
外文關鍵詞: Ultracpapcitor, Real-time estimation, Unscented kalman filter, Recursive Least Squares
相關次數: 點閱:379下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

儘管超級電容有著功率密度高、工作溫度範圍廣及循環壽命長等優點,超級電容的阻抗特性仍會受到老化程度、操作電壓及溫度等條件的影響,形成精確估測充電狀態(SOC)和健康狀態(SOH)等之挑戰。因此,本研究提出以無跡卡爾曼濾波器(UKF)結合適應性遞迴最小平方法(RLS)擬定之多種估測策略,以達成超級電容阻抗參數及狀態之即時估測。具體來說,透過無跡卡爾曼濾波器估測超級電容充電狀態(SOC)、電壓、溫度及串聯電阻值,並以適應性遞迴最小平方法估測電容值等超級電容阻抗參數,即時更新卡爾曼濾波器中之模型參數。最後,分別以模擬和實驗驗證所提出的不同的估測策略,使用三種不同老化程度之超級電容在多種充放電行程下進行測試。結果顯示,所提出的估測策略(2) 與估測策略(3),在不同老化程度及各種操作條件下,都能夠達成最大電壓誤差小於0.1 V,最大溫度誤差小於0.04 ℃,且參數RS與參數C估測準確率皆大於90 %之條件。而由於所提出之估測策略能達成無跡卡爾曼濾波器中參數之即時線上更新,可預期在不同超級電容的應用上皆有良好的移植性。


Even though ultracapacitor has the advantages of high power density, wide operating
temperature range and long cycle life, the impedance characteristics of Ultracapacitor still depend heavily on the aging condition, operating voltage and temperature. As a result, accurate estimation of the capacitor states such as the state of charge (SOC) and state of health (SOH) remains a challenging task. In this thesis, the unscented Kalman filter (UKF) is integrated with the recursive least square (RLS) method to simultaneously achieve real-time estimation of the impedance parameters and capacitor states. Specifically, the UKF is used to estimate SOC, voltages, temperature and series resistance, whereas the RLS is employed for online estimation of the other impedance parameters, such as the capacitance, which are then used to update the parameters in the UKF. Finally, three estimation strategy is examined, via both simulation and experiment, on ultracapacitors of three different aging conditions using various charging and discharging cycles. The results show that, under various aging and operating conditions, the proposed estimation strategy (2) and estimation strategy (3) achieve maximum estimate errors less than 0.1 V and 0.04 ℃ in voltage and temperature respectively, and the accuracy of parameter estimation is higher than 90 %. Since the parameters in the UKF are updated online, the propose algorithm is expected to attain desirable portability across different ultracapacitors.

摘要 i 英文摘要 ii 致謝 iii 目錄 viii 圖目錄 xiv 表目錄 xvi 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 5 1.2.1 等效電路模型文獻回顧 6 1.2.2 熱效應文獻回顧 6 1.2.3 老化效應文獻回顧 7 1.2.4 估測方法 7 1.3 研究目的 9 1.4 論文架構 9 第二章 實驗設備與軟體 11 2.1 元件介紹 11 2.1.1 電容器介紹 11 2.1.2 超級電容器原理 13 2.2 硬體設備 17 2.2.1 交流阻抗分析儀 18 2.2.2 可程式直流電源供應器 20 2.2.3 直流電子負載機 22 2.2.4 可程式恆溫試驗機 24 2.2.5 霍爾效應傳感器 25 2.2.6 電阻式溫度感測器 26 2.2.7 數據擷取系統 27 2.3 實驗設備軟體 29 2.3.1 MATLAB 29 2.3.2 Simulink 29 2.3.3 Simulink Real-Time 30 第三章 超級電容模型 31 3.1 交流阻抗分析法 31 3.2 超級電容之等效電路模型 36 3.3 超級電容之熱動態效應模型與參數鑑別 43 3.3.1 熱動態效應模型 43 3.3.2 熱動態模型參數鑑別 44 第四章 估測方法介紹 45 4.1 卡爾曼濾波器 47 4.2 無跡卡爾曼濾波器 54 4.3 最小平方法 59 4.4 遞迴最小平方法 61 4.5 超級電容離散方程式 64 4.6 估測策略 66 4.6.1 估測策略 (1) 66 4.6.2 估測策略 (2) 68 4.6.3 估測策略 (3) 70 第五章 模擬及實驗結果 71 5.1 超級電容之加速老化實驗 71 5.2 模擬結果 76 5.2.1 1 A 充電行程 77 5.2.1.1 超級電容 A 77 5.2.1.2 超級電容 B 80 5.2.1.3 超級電容 C 83 5.2.2 固定週期充放電行程 86 5.2.2.1 超級電容 A 86 5.2.2.2 超級電容 B 89 5.2.2.3 超級電容 C 92 5.2.3 NYCC 駕駛行程 95 5.2.3.1 超級電容 A 95 5.2.3.2 超級電容 B 98 5.2.3.3 超級電容 C 101 5.3 實驗結果 104 5.3.1 1 A 充電行程 106 5.3.1.1 超級電容 A 106 5.3.1.2 超級電容 B 110 5.3.1.3 超級電容 C 114 5.3.2 固定周期充放電行程 118 5.3.2.1 超級電容 A 118 5.3.2.2 超級電容 B 122 5.3.2.3 超級電容 C 126 5.3.3 NYCC 駕駛行程 130 5.3.3.1 超級電容 A 130 5.3.3.2 超級電容 B 134 5.3.3.3 超級電容 C 138 第六章 結果與未來展望 143 6.1 結論 143 6.2 未來展望 148 參考文獻 154 附錄 155 A 協方差表 157

[1] 張永瑞、謝錦隆, 2009. 再生能源 HCPV.SOFC 高功率電力調控系統研製報告技術.
[2] 祝毓, 2009. 二次電池技術的發展及其比較.
[3] K. R and C. M, “Principles and applications of electrochemical capacitors,” Elec- trochimica Acta, vol. 45, pp. 2483–2498, 2000.
[4] 林怡慶, 2009. 超級電容器技術發展與應用趨勢分析 (PART1).
[5] 佳榮能源科技股份有限公司. http://www.ultra-pack.com/tw/.
[6] S. R. F, Belhachem and B. Davat, “A physical based model of power electric double- layer supercapacitors,” Industry Applications Conference IEEE, vol. 5, pp. 3069–3076, 2000.
[7] R. L. Spyker and R. M. Nelms, “Classical equivalent circuit parameters for a double- layer capacitor,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, pp. 829–836, 2000.
[8] L. Zubieta and R. Bonert, “Characterization of double-layer capacitors for power elec- tronics applications,” IEEE Transactions on Industry Applications, vol. 36, January-February 2000.
[9] D. K. S. Buller, E. Karden and R. W. D. Doncker, “Modeling the dynamic behavior of supercapacitors using impedance spectroscopy,” IEEE Transactions on Industry Appli- cations, vol. 38, pp. 1622–1626, November-Decembe 2002.
[10] A. B. H. Gualous, D. Bouquain and J. M. Kaffmann, “Experimental study of superca- pacitor serial resistance and capacitance variations with temperature,” Jourual of power Sources, vol. 123, pp. 86–93, 2003.
[11] M. H. R. Kötz and R. Gallay, “Temperature behavior and impedance fundamentals of supercapacitors,” Journal of Power Sources, vol. 154, pp. 550–555, 2005.
[12] D. L. J. Schiffer and D. U. Sauer, “Heat generation in double layer capacitors,” Journal of Power Sources, vol. 160, pp. 765–772, February 2006.
[13] E.Peled J.Electrochem.Soc., vol. 126, pp. 2047–2051, 1979.
[14] H. J. Ploehn, P. Ramadass, and R. E. White J.Electrochem.Soc., vol. 151, pp. 456–462, 2004.
[15] T. Yoshida, M. Takahashi, S. Morikawa, C. Ihara, H. Katsukawa, T. Shiratsuchi, and J. Yamaki J.Electrochem.Soc., vol. 153, pp. 576–582, 2006.
[16] M.Broussely, S.Herreyre, P.Biensan, P.Kasztejna, K.Nechev, and R.J.Staniewicz J.Power Sources, vol. 97-98, pp. 13–23, 2001.
[17] K. Honkura, K. Takahashi, and T. Horiba, “Capacity-fading prediction of lithium-ion batteries based on discharg curves analysis,” J.Power Sources, vol. 196, pp. 10141– 10147, 2011.
[18] A. J. Salkind, C. Fennie, P. Singh, T. Atwater, and D. E. Reisner, “Determination of state-of-change and state-of-health of batteries by fuzzy logic methodology,” Journal of Power Sources, vol. 80, pp. 293–300, 1999.
[19] D. U. S. Oliver Bohlen, Julia Kowal, “Ageing behaviour of electrochemical double layer capacitors part i. experimental study and ageing model,” Journal of Power Sources, vol. 172, pp. 468–475, 2007.
[20] D. U. S. Oliver Bohlen, Julia Kowal, “Ageing behaviour of electrochemical double layer capacitors part ii. lifetime simulation model for dynamic applications,” Journal of Power Sources, vol. 173, 626-632 2007.
[21] Y.-P. C. Kong Soon Ng, Chin-Sien Moo and Y.-C. Hsieh, “Enhanced coulomb count- ing method for estimating state-of-charge and state-of health of lithium-ion batteries,” Applied Energy, vol. 86, pp. 1506–1511, 2009.
[22] M. Ecker, J. B. Gerschler, J. Vogel, S. Käbitz, F. Hust, P. Dechent, and D. U. Sauer, “Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data,” Journal of Power Sources, vol. 215, pp. 248–257, 2012.
[23] K. W. E. Cheng, B. Divakar, H. Wu, K. Ding, and H. F. Ho, “Battery-management sys- tem (bms) and soc development for electrical vehicles,” IEEE transactions on vehicular technology, vol. 60, no. 1, pp. 76–88, 2010.
[24] Z. Chen, Y. Fu, and C. C. Mi, “State of charge estimation of lithium-ion batteries in electric drive vehicles using extended kalman filtering,” IEEE Transactions on Vehicu- lar Technology, vol. 62, no. 3, pp. 1020–1030, 2012.
[25] B. Xia, C. Chen, Y. Tian, W. Sun, Z. Xu, and W. Zheng, “A novel method for state of charge estimation of lithium-ion batteries using a nonlinear observer,” Journal of power sources, vol. 270, pp. 359–366, 2014.
[26] J. Zhang, Y. Wei, and H. Qi, “State of charge estimation of lifepo4 batteries based on online parameter identification,” Applied Mathematical Modelling, vol. 40, no. 11-12, pp. 6040–6050, 2016.
[27] W. Li, L. Liang, W. Liu, and X. Wu, “State of charge estimation of lithium-ion batteries using a discrete-time nonlinear observer,” IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 8557–8565, 2017.
[28] M. A. Hannan, M. H. Lipu, A. Hussain, and A. Mohamed, “A review of lithium-ion battery state of charge estimation and management system in electric vehicle applica- tions: Challenges and recommendations,” Renewable and Sustainable Energy Reviews, vol. 78, pp. 834–854, 2017.
[29] N.-T. Tran, A. B. Khan, T.-T. Nguyen, D.-W. Kim, and W. Choi, “Soc estimation of multiple lithium-ion battery cells in a module using a nonlinear state observer and online parameter estimation,” Energies, vol. 11, no. 7, p. 1620, 2018.
[30] P. A, G and H. A, F, “Carbon properties and their role in supercapacitors,” Journal of Power Sources, vol. 157, pp. 11–27, April 2006.
[31] . B. E. Conway), 陳艾、吳孟強、張緒禮、高能武等譯, 電化學超級電容器-科學原理及技術應用. 化學工業出版社, 2005.
[32] Zahner, Thales/IM6 Manual. Zahner, Kronach, Germany, 2021.
[33] 石良臣, MATLAB/Simulink 系統仿真超級學習手冊. 人民郵電出版社, 2019.
[34] A. A. Mohamed and D. M. Ali, “Creating real-time operation system based on xpc target kernel,” International Journal of Recent Technology and Engineering, vol. 2, 2013.
[35] P. J. Mosterman, S. Prabhu, A. Dowd, J. Glass, T. Erkkinen, J. Kluza, and R. Shenoy, “Embedded real-time control via matlab, simulink, and xpc target,” in Handbook of networked and embedded control systems, pp. 419–446, Springer, 2005.
[36] S. L. J. S. Lai and M. F. Rose, “High energy density double-layer capacitors for energy storage applications,” IEEE Aes Magazine, vol. 77, pp. 14–19, 1992.
[37] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications. John Wiley & Sons, 2018.
[38] D. K. S. Buller, E. Karden and R. W. D. Doncker, “Temperature behavior and impedance fundamentals of supercapacitors,” IEEE Transactions on Industry Appli- cations, vol. 154, pp. 550–555, 2005.
[39] 黃韋融, 超級電容非線性老化降為模式之建模. 碩士論文, 103 年,台北.
[40] 黃科竣, 利用無跡卡爾曼濾波器為基礎實現超級電容充電狀態、溫度及剩餘壽命之即時估測. 碩士論文, 105 年,台北.
[41] 周明憲, 以遞迴最小平方法結合無跡卡爾曼濾波器實現鋰離子電池參數、充電狀態、健康狀態及溫度之即時估測. 碩士論文, 110 年,台北.
[42] M. S. Grewal and A. P. Andrews, Kalman filtering: Theory and Practice with MATLAB. John Wiley & Sons, 2014.
[43] 黄小平,王岩, 卡爾曼濾波原理及應用:MATLAB 仿真. 北京:電子工業出版社, 2015.
[44] 王衍凱, 以擴張型卡爾曼濾波器為基礎之感應馬達無感測控制及定子轉子阻抗估測. 碩士論文, 99 年,台北.
[45] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach for filtering non- linear systems,” in Proceedings of 1995 American Control Conference-ACC’95, vol. 3, pp. 1628–1632, IEEE, 1995.
[46] S. Haykin, Kalman Filtering and Neural Networks. John Wiley and Sons, Inc., 2001.
[47] S. J. Julier, “The spherical simplex unscented transformation,” in Proceedings of the 2003 American Control Conference, 2003., vol. 3, pp. 2430–2434, IEEE, 2003.
[48] 黃安橋, 適應性控制. 講義, 109 年,台北.
[49] R. German, P. Venet, O. Briat, and J.-M. Vinassa, “Improved supercapacitor floating ageing interpretation through multipore impedance model parameters evolution,” IEEE Transactions on Power Electronics, vol. 29, pp. 3669–3678, 2014.

無法下載圖示 全文公開日期 2025/08/11 (校內網路)
全文公開日期 2025/08/11 (校外網路)
全文公開日期 2025/08/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE