簡易檢索 / 詳目顯示

研究生: 吳健平
Chien-Ping Wu
論文名稱: 可變剛性致動器開發與飛躍抓枝機器人著陸效能改良之應用
Development of a Variable Stiffness Actuator and its Application to Improving Landing Performance of Ricochetal Brachiating Robot
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 林紀穎
Chi-Ying Lin
黃安橋
An-Chyau Huang
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 100
中文關鍵詞: 可變剛性致動器機械式可調順應性與可控平衡位置致動器連續旋轉大剛性調變範圍飛躍抓枝機器人虛擬阻尼控制
外文關鍵詞: Variable stiffness actuator, MACCEPA, continuous rotation, wide stiffness modulation range, ricochetal brachiating robot, virtual damper control
相關次數: 點閱:196下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著少子化及人口老化等社會問題日趨嚴重,人們對於機器人的需求逐漸增長,因此該如何讓高剛性的機器人與人類和平共存是目前科學家們致力於研究的議題。機器人通常以致動器作為其動力來源,而在眾多的致動器中,「可變剛性致動器」(Variable stiffness actuator,VSA)由於具有順應性、力矩感測及可變剛性的能力,適用於人機互動相關的應用,因此在近年來逐漸受到重視。「機械式可調順應性與可控平衡位置致動器」(Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator,MACCEPA)為一種常見的VSA,其內部具有一條彈簧及兩顆馬達,能以相對簡易的設計使兩顆馬達分別進行力量控制及剛性控制;但其具有無法連續旋轉以及可變剛性範圍狹小等缺點,導致其應用範圍受到侷限。本研究以MACCEPA為基礎進行改良,克服上述兩項缺陷開發出功能更加完備的VSA。本研究同時亦對所開發的VSA進行力矩估測公式推導,並以修正係數來彌補機構誤差所導致的估測誤差,且藉由力矩感測器驗證推導公式的準確性,而VSA內部的彈簧之剛性與力矩曲線分布的關係則可作為彈簧選用的依據。最後本研究將所開發的VSA應用於簡化版的飛躍抓枝機器人,探討VSA能否增加其著陸穩定性。我們將實驗分為不同著陸策略與不同釋放高度進行,實驗結果證實藉由虛擬阻尼控制並設定適當的剛性及虛擬阻尼係數可使VSA有效吸收機器人著陸時產生的衝擊,減少彈跳及搖晃的現象,因此未來可將此VSA應用於飛躍抓枝機器人提升其著陸成功機率。


With the growing social problems such as declining birthrate and population aging, the demand for robots is increasing day by day. Therefore, how to make high-stiffness robots safely interacted with humans is a popular research topic nowadays. Among many robot actuators, "Variable Stiffness Actuator" (VSA) have the capability of torque sensing and stiffness variation, which is very suitable for the applications related to human-robot interaction. As a matter of fact, VSA has gradually drawn much attention in recent years. MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator) is a common VSA including a spring and two motors, in which torque control and stiffness control can be performed separately by these two motors with a relatively simple design, but it is incapable of continuous rotation and lack of wide stiffness modulation, limiting the use in practical applications. In view of this, this study aims to overcome the above two issues in order to develop a more versatile VSA based on the principle of MACCEPA design. In addition, this study also derives the torque estimation equation for the developed VSA and proposes a correction factor to compensate the estimating error caused by the assembling inaccuracy, where the effectiveness of equation is verified by using a torque sensor. The relationship between spring constant and torque curve distribution is also discussed, which can be used as a guideline for spring selection. We finally apply the developed VSA to a simplified version of ricochetal brachiating robot and discuss whether the VSA can improve its landing stability. We set up two experiments associated with different landing strategies and releasing heights. The experimental results show that by using virtual damper control with an appropriate stiffness selection, we can let the VSA effectively reduce the landing impact as well as the bouncing and shaking effect. In the future the VSA and developed control methods could be integrated to the design and control of ricochetal brachiating robots to increase the success rate of landing.

摘要 (I) Abstract (II) 誌謝 (III) 目錄 (IV) 圖目錄 (VI) 表目錄 (IX) 第一章 緒論 (1) 1.1 前言 (1) 1.2 研究動機與目的 (4) 1.2.1 既有研究的不足 (4) 1.2.2 本研究的應用範圍 (5) 1.3 文獻回顧 (8) 1.3.1 MACCEPA相關研究 (8) 1.3.2 國內之彈性致動器相關研究 (9) 1.3.3 大剛性範圍之VSA (10) 1.3.4 可連續旋轉之VSA (11) 1.3.5 混合型VSA (12) 1.3.6 VSA綜合評比 (13) 1.3.7 VSA於抓枝機器人上之應用 (13) 1.4 本文貢獻與架構 (16) 第二章 系統架構 (18) 2.1 系統運作原理 (18) 2.2 系統改良 (20) 2.3 系統設計 (21) 2.3.1 馬達及減速齒輪 (22) 2.3.2 驅動單元 (23) 2.3.3 輸出單元 (24) 2.3.4 剛性調整單元 (25) 2.3.5 鋼線配置 (27) 2.3.6 系統配線 (30) 2.4 實驗設備 (31) 2.4.1 個人電腦與軟體 (31) 2.4.2 資料擷取卡 (32) 2.4.3 編碼器與解碼卡 (33) 2.4.4 直流馬達驅動器 (34) 2.4.5 力矩感測器與訊號處理器 (35) 第三章 力矩估測與動態建模 (37) 3.1 力矩估測 (37) 3.1.1 力矩估測公式推導 (37) 3.1.2 估測力矩驗證 (40) 3.1.3 估測力矩修正 (43) 3.1.4 彈簧選用指南 (46) 3.2 動態建模 (48) 3.2.1 系統動態方程式推導 (48) 3.2.2 系統參數識別 (49) 3.2.3 動態模型驗證 (56) 第四章 抓枝機器人著陸實驗 (58) 4.1 實驗規劃 (59) 4.2 實驗一:不同著陸策略 (63) 4.3 實驗二:不同釋放高度 (76) 第五章 結論與未來目標 (83) 5.1 結論 (83) 5.2 未來目標 (83) 參考文獻 (85)

[1] 台灣社會快速「老化」 老年人口占比逼近15%。檢自https://money.udn.com/money/story/5612/3937307

[2] G. A. Pratt and M. M. Williamson, "Series elastic actuators," Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, 1995, pp. 399-406 vol.1.

[3] B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D. G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M. Van Damme, R. Van Ham, L. C. Visser, and S. Wolf, "Variable impedance actuators: A review," in Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1601-1614, 2013.

[4] 福寶科技攻機器人,幫身障者重新站起來。檢自https://money.udn.com/money/story/5634/3375067

[5] 復健路上助你邁開「雙腿之力」,復健機器人讓人更快達成行走目標。檢自http://www.ilong-termcare.com/Article/Detail/1703

[6] 奧迪工廠:人機協作輕鬆安裝CFRP車頂。檢自https://weiwenku.net/d/102799197

[7] NASA’S VALKYRIE (R5) ROBOT. Retrieved from https://ourplnt.com/confluence-robotics-space-exploration/valkyrie-r5-robot-nasa/

[8] This climber lost his legs, so he built robotic replacements. Retrieved from https://nypost.com/2017/03/11/this-climber-lost-his-legs-so-he-built-robotic-replacements/

[9] X. Li, W. Chen, and W. Lin, "Design of a structure-controlled variable stiffness actuator based on rotary flexure hinges," 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 45-50.

[10] W. Wang, Y. Zhao, and Y. Li, "Design and Dynamic Modeling of Variable Stiffness Joint Actuator Based on Archimedes Spiral," in IEEE Access, vol. 6, pp. 43798-43807, 2018.

[11] B. Kim and J. Song, "Design and Control of a Variable Stiffness Actuator Based on Adjustable Moment Arm," in IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1145-1151, 2012.

[12] A. Jafari, N. G. Tsagarakis, and D. G. Caldwell, "AwAS-II: A new Actuator with Adjustable Stiffness based on the novel principle of adaptable pivot point and variable lever ratio," 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 4638-4643.

[13] N. G. Tsagarakis, I. Sardellitti, and D. G. Caldwell, "A new variable stiffness actuator (CompAct-VSA): Design and modelling," 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 378-383.

[14] J. Sun, Z. Guo, Y. Zhang, X. Xiao, and J. Tan, "A Novel Design of Serial Variable Stiffness Actuator Based on an Archimedean Spiral Relocation Mechanism," in IEEE/ASME Transactions on Mechatronics, vol. 23, no. 5, pp. 2121-2131, 2018.

[15] R. Van Ham, B. Vanderborght, M. Van Damme, B. Verrelst, and D. Lefeber, "MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot," in Robotics and Autonomous Systems, vol. 55, no. 10, pp. 761-768, 2007.

[16] R. Jimenez-Fabian, L. Flynn, J. Geeroms, N. Vitiello, B. Vanderborght, and D. Lefeber, "Sliding-Bar MACCEPA for a Powered Ankle Prosthesis," in Journal of Mechanisms and Robotics, vol. 7, no. 4, 2015.

[17] MACCEPA: The Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator. Retrieved from http://mech.vub.ac.be/multibody/topics/maccepa.htm

[18] 吳健平、林紀穎,「基於可變剛性致動器之順應性夾爪設計與動態建模」,中國機械工程學會第35屆全國學術研討會(CSME 2018)。

[19] ARTICULATED ROBOT / 6-AXIS / MICRO-SCREWING / PACK. Retrieved from http://www.directindustry.com/prod/kuka-roboter-gmbh/product-17587-1873592.html

[20] CNC machining - quickly and quietly transforming production. Retrieved from https://www.manufacturingglobal.com/technology/cnc-machining-quickly-and-quietly-transforming-production

[21] Keble’s Trading. Retrieved from https://www.mining-technology.com/contractors/chains/kebles-trading/

[22] D. Kappler, P. Pastor, M. Kalakrishnan, M. Wüthrich, and S. Schaal, "Data-Driven Online Decision Making for Autonomous Manipulation," Robotics: Science and Systems, 2015.

[23] Soft Robotics Gains $20 Million to Back Logistics Expansion. Retrieved from https://www.wsj.com/articles/soft-robotics-gains-20-million-to-back-logistics-expansion-1525255201

[24] SCHUNK Leichtbauarme LWA 4P Griff in die Kiste in der Intralogistik. Retrieved from https://www.youtube.com/watch?time_continue=31&v=5aYKPaVvI50

[25] FTNON neemt meerderheidsbelang in Lacquey. Retrieved from https://www.vmt.nl/Nieuws/FTNON_neemt_meerderheidsbelang_in_Lacquey-150303133451

[26] Robots Learn To Pick Things Up as Babies Do. Retrieved from https://www.cs.cmu.edu/news/robots-learn-pick-things-babies-do

[27] 日本照護機器人「Robear」不但長得可愛,還可以給予溫柔的懷抱。檢自http://technews.tw/2015/02/25/robear/

[28] Bestic Package Deal. Retrieved from https://www.camanio.com/en/webshop/bestic-package-deal/

[29] DLR - Institute of Robotics and Mechatronics - Rollin' Justin. Retrieved from https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-11427/#gallery/27296

[30] Global Food Industry Robot Market Report Presents an Overall Analysis, Business Insights, Trends and Forecast 2023. Retrieved from https://thetradereporter.com/global-food-industry-robot-market-report-presents-an-overall-analysis-business-insights-trends-and-forecast-2023/20%E2%80%A6

[31] Robot Arm Using a Hammer. Retrieved from https://www.youtube.com/watch?v=qVaaGld401I

[32] M. Weckx, R. V. Ham, H. Cuypers, R. Jiménez-Fabián, D. Torricelli, J. L. Pons, B. Vanderborght, and D. Lefeber, "Prototype design of a novel modular two-degree-of-freedom variable stiffness actuator," 2014 IEEE-RAS International Conference on Humanoid Robots, 2014, pp. 33-38.

[33] G. Mathijssen, R. Furnémont, S. Beckers, T. Verstraten, D. Lefeber, and B. Vanderborght, "Cylindrical cam mechanism for unlimited subsequent spring recruitment in Series-Parallel Elastic Actuators," 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 857-862.

[34] R. Furnémont, G. Mathijssen, T. v. d. Hoeven, B. Brackx, D. Lefeber, and B. Vanderborght, "Torsion MACCEPA: A novel compact compliant actuator designed around the drive axis," 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 232-237.

[35] I. Vanderniepen, R. V. Ham, M. V. Damme, R. Versluys, and D. Lefeber, "Orthopaedic rehabilitation: A powered elbow orthosis using compliant actuation," 2009 IEEE International Conference on Rehabilitation Robotics, 2009, pp. 172-177.

[36] M. Moltedo, T. Baček, K. Langlois, K. Junius, B. Vanderborght, and D. Lefeber, "Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis," 2017 International Conference on Rehabilitation Robotics (ICORR), 2017, pp. 283-288.

[37] R. Versluys, A. Matthys, R. V. Ham, I. Vanderniepen, and D. Lefeber, "Powered ankle-foot system that mimics intact human ankle behavior: Proposal of a new concept," 2009 IEEE International Conference on Rehabilitation Robotics, 2009, pp. 658-662.

[38] P. Cherelle, V. Grosu, P. Beyl, A. Mathys, R. V. Ham, M. V. Damme, B. Vanderborght, and D. Lefeber, "The MACCEPA actuation system as torque actuator in the gait rehabilitation robot ALTACRO," 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 2010, pp. 27-32.

[39] B. Brackx, J. Geeroms, J. Vantilt, V. Grosu, K. Junius, H. Cuypers, B. Vanderborght, and D. Lefeber, "Design of a modular add-on compliant actuator to convert an orthosis into an assistive exoskeleton," 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, 2014, pp. 485-490.

[40] T. Bacek, R. Unal, M. Moltedo, K. Junius, H. Cuypers, B. Vanderborght, and D. Lefeber, "Conceptual design of a novel variable stiffness actuator for use in lower limb exoskeletons," 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 2015, pp. 583-588.

[41] 顏志銘,「應用於不同材質工件組裝之工業型鉚壓系統設計與驗證」,國立臺灣科技大學機械工程系碩士論文,2018。

[42] 吳健平、陳榕紳、林紀穎,「基於串聯式彈性致動器的自動化鑽削系統開發」,中國機械工程學會第34屆全國學術研討會(CSME 2017)。

[43] 李信皇,「應用串聯彈性致動器於機器人復建系統之實現」,國立臺灣科技大學電機工程系碩士論文,2018。

[44] 龐永承,「串接式彈性致動器之扭力控制研究」,國立臺灣科技大學自動化及控制研究所碩士論文,2017。

[45] W. Wei-Jhe and L. Pei-Chun, "A switchable clutched parallel elasticity actuator," 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017, pp. 1173-1178.

[46] Y. Su, K. Wu, C. Lin, Y. Yu, and C. Lan, "Design of a Lightweight Forearm Exoskeleton for Fine-Motion Rehabilitation," 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2018, pp. 438-443.

[47] H. Hsieh, D. Chen, L. Chien, and C. Lan, "Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation," in IEEE/ASME Transactions on Mechatronics, vol. 22, no. 5, pp. 2034-2045, 2017.

[48] K. Wu, Y. Su, Y. Yu, K. Lin, and C. Lan, "Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation," 2017 International Conference on Rehabilitation Robotics (ICORR), 2017, pp. 567-572.

[49] L. Kuei-You, W. Kuan-Yi, and L. Chao-Chieh, "High-performance series elastic stepper motors for interaction force control," 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017, pp. 773-778.

[50] L. Chien, D. Chen, and C. Lan, "Design of an adaptive exoskeleton for safe robotic shoulder rehabilitation," 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2016, pp. 282-287.

[51] Y. Lee, C. Chu, J. Xu, and C. Lan, "A Humanoid Robotic Wrist With Two-Dimensional Series Elastic Actuation for Accurate Force/Torque Interaction," in IEEE/ASME Transactions on Mechatronics, vol. 21, no. 3, pp. 1315-1325, 2016.

[52] 鄭逸倫,「整合力矩控制與重心估測並利用增強式學習提升雙足機器人行走穩定性」,國立清華大學動力機械工程學系碩士論文,2018。

[53] 蔡禾庭,「整合重心估測與力矩控制於提昇雙足機器人行走穩定性」,國立清華大學動力機械工程學系碩士論文,2017。

[54] A. Jafari, N. G. Tsagarakis, I. Sardellitti, and D. G. Caldwell, "How design can affect the energy required to regulate the stiffness in variable stiffness actuators," 2012 IEEE International Conference on Robotics and Automation, 2012, pp. 2792-2797.

[55] G. Tonietti, R. Schiavi, and A. Bicchi, "Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction," Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, pp. 526-531.

[56] M. Fumagalli, E. Barrett, S. Stramigioli, and R. Carloni, "The mVSA-UT: A miniaturized differential mechanism for a continuous rotational variable stiffness actuator," 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), 2012, pp. 1943-1948.

[57] M. Dežman and A. Gams, "Pseudo-linear variable lever variable stiffness actuator: Design and evaluation," 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017, pp. 785-790.

[58] T. Fukuda, H. Hosokai, and Y. Kondo, "Brachiation type of mobile robot," Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments, 1991, pp. 915-920 vol.2.

[59] 楊宗翰,「橫向飛躍抓枝機器人之設計改良與運動控制研究」,國立臺灣科技大學機械工程系碩士論文,2018。

[60] 胡婷鈞,「可於壁面凸塊進行橫向攀爬之抓技機器人設計與運動控制策略研究」,國立臺灣科技大學機械工程系碩士論文,2018。

[61] J. Nakanishi, A. Radulescu, D. J. Braun, and S. Vijayakumar, "Spatio-temporal stiffness optimization with switching dynamics," in Autonomous Robots, vol. 41, no. 2, pp. 273-291, 2017.

[62] S. Wolf, O. Eiberger, and G. Hirzinger, "The DLR FSJ: Energy based design of a variable stiffness joint," 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 5082-5089.

[63] FAQ: What’s the difference between torque constant, back EMF constant, and motor constant. Retrieved from https://www.motioncontroltips.com/faq-difference-between-torque-back-emf-motor-constant/

[64] Maxon RE 40 Ø40 mm, Graphite Brushes, 150 Watt Catalog page. Retrieved from https://www.maxongroup.com/medias/sys_master/root/8833416495134/19-EN-136.pdf

[65] A. A. Bhole, J. Kumle, S. S. Groothuis, and R. Carloni, "Control of a variable stiffness joint for catching a moving object," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 4756-4761.

[66] S. S. Groothuis, G. Rusticelli, A. Zucchelli, S. Stramigioli, and R. Carloni, "The Variable Stiffness Actuator vsaUT-II: Mechanical Design, Modeling, and Identification," in IEEE/ASME Transactions on Mechatronics, vol. 19, no. 2, pp. 589-597, 2014.

無法下載圖示 全文公開日期 2024/08/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE