簡易檢索 / 詳目顯示

研究生: 金怡儒
Yi-Lu Jin
論文名稱: 具推進力之二連桿飛躍抓枝機器人運動步態分析
Locomotion Analysis of Two-Link Ricochetal Brachiation Robot with Propelling Force
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 黃育熙
Yu-Hsi Huang
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: 飛躍抓枝機器人飛躍階段推進力身軀姿態補償著陸姿態
外文關鍵詞: Ricochetal brachiation robot, flight phase, propelling force, body posture compensation, landing posture
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不同於既有飛躍抓枝機器人為參考猿猴交替抓握桿件的運動姿態進行設計,本研究主要以健身愛好者在橫梯間進行身體擺動然後手放開順勢抓握至下一目標桿之獨特運動姿態,藉此作為新型飛躍抓枝機器人之設計參考依據。本文以上述之飛躍握桿運動姿態為基礎建立一系列的動作流程,並假設在具推進力的情況下探討二連桿抓枝機器人欲成功完成此運動姿態於各階段所需滿足之設計參數為何。傳統的飛躍抓枝機器人研究皆僅藉由尾巴擺盪的方式累積能量進行飛躍,本研究於動態模擬中特別著重分析加入推進力後機器人的飛躍距離以及著陸姿態,並根據分析結果初步提出實作上可行性較高的推進裝置機械設計概念。機器人於飛躍期間因系統質量分布不均與滿足角動量守恆等因素,不可避免會產生身體姿態旋轉,如此將使機器人於著陸階段時的夾爪部份與目標桿的空間位置/姿態差異過大、實作上將無法成功抓握桿件。本研究亦探討飛躍期間進行身體姿態補償對於著陸階段機器人夾爪部件姿態調整的效果。經過模擬結果證實,若於飛躍期間加入身體姿態補償,搭配適當的推進力與設計參數選擇可獲得更遠的飛躍距離並同時保有良好的著陸姿態。


    Unlike most existing ricochetal brachiation robots mimicking apes for locomotion
    design, this research proposes a unique locomotion style by referring to the nimble movement between the handholds of horizontal ladder performed by fitness enthusiasts. Motivated by the aforementioned locomotion, a series of motion flow is established and a two-link brachiation robot including both swing phase and propelling force is adopted to investigate the required design parameters for the proposed robot ricochetal brachiation. Simulation analysis is conducted to analyze the effects of adding propelling force on the flight distance and in particular the landing posture and provide a conceptual mechanical design of propelling device mounted on the gripper as a reference for future implementation. The fact that undesired body posture inevitably occurs during the flight phase due to the imbalanced mass distribution and the law of conservation of angular momentum may deviate the gripper of the robot away from the target bar or produce inappropriate gripper orientation, greatly influencing the successful rate of gripper grasping at landing phase. In light of this, the study also discusses the effects of body posture compensation on the performance of the whole locomotion process. Simulation results reveal that the inclusion of body posture compensation in the flight phase and propelling force is able to further
    enlarge the flight distance and maintain a benign landing posture with well-selected system design parameters. In the future a mechatronic design for this robot will be presented to further validate the feasibility of the proposed locomotion.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.2.1 與既有研究的差異 3 1.2.2 問題描述 7 1.3 文獻回顧 9 1.4 研究貢獻與架構 11 第二章 系統設計構想 12 2.1 飛躍抓枝機器人動作流程分析 12 2.2 模擬假設及定義 15 2.3 飛躍抓枝機器人的設計參數 17 第三章 系統模型推導 19 3.1 推進裝置模型 19 3.2 直流馬達動態模型 21 3.3 機器人擺盪階段動態模型 24 3.4 機器人釋能階段動態模型 27 3.5 機器人調整階段動態模型 30 3.5.1 平移運動部分 31 3.5.2 旋轉運動部分 33 第四章 系統動態分析與控制器設計 36 4.1 擺盪階段:擺盪控制器設計 36 4.2 調整階段:姿態補償控制器設計 37 第五章 機器人模擬結果與討論 39 5.1 挑選依據 39 5.1.1 尾巴追跡目標 39 5.1.2 起飛姿態 40 5.1.3 推進力 42 5.2 第一組模擬 45 5.2.1 模擬一:擺盪飛躍模擬(N、Y)46 5.2.2 模擬二:飛躍抓枝機器人模擬(NL)48 5.2.3 模擬三:飛躍抓枝機器人模擬(YL)50 5.2.4 第一組模擬小結 52 5.3 第二組模擬 56 5.3.1 模擬一:推進大小1.5倍 57 5.3.2 模擬二:推進大小2倍 58 5.3.3 模擬三:推進大小2.5倍 59 5.3.4 第二組模擬小結 60 第六章 結論與未來目標 61 6.1 結論 61 6.2 未來目標 62 參考文獻 63 附錄 系統設備規格 66

    [1] "Celebrate England’s Outdoor Gyms Reopening With This Park Workout," 2010,
    https://www.coachmag.co.uk/exercises/264/outdoor-gym-zone-park-workout.

    [2] "Atleta de street workout lazarocardenense competirá en Egipto y Asia," 2018,
    https://www.elsoldemorelia.com.mx/deportes/atleta-de-street workoutlazarocardenense- competira-en-egipto-y-asia-2765541.html.

    [3] "How to Do Monkey Bar Jumps | Warrior Fitness," 2013, https://www.youtube.com/watch?v=DFeP0RiijUs.

    [4] "LIFESPAN KIDS - Amazon 2.5 m Monkey Bar Set," https://www.lifespankids.com.au/products/amazon-monkey-bar-set

    [5] J. Nakanishi, T. Fukuda, and D. E. Koditschek, "Experimental implementation of a "target dynamics" controller on a two-link brachiating robot," in Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), 1998, vol. 1, pp. 787-792 vol.1.

    [6] A. Meghdari, S. M. H. Lavasani, M. Norouzi, and M. S. R. J. R. Mousavi, "Minimum control effort trajectory planning and tracking of the CEDRA brachiation robot," vol. 31, no. 7, pp. 1119-1129, 2013.

    [7] J. Nakanishi and T. Fukuda, "A leaping maneuvre for a brachiating robot," in
    Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
    on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2000,
    vol. 3, pp. 2822-2827 vol.3.

    [8] E. L. Simons, "Primate Evolution: An Introduction to Man’s Place in Nature. New York: MacMillan," 1972.

    [9] H. Cheng, C. Rui, and L. Hao, "Motion Planning for Ricochetal Brachiation
    Locomotion of Bio-primitive Robot," in 2017 IEEE 7th Annual International
    Conference on CYBER Technology in Automation, Control, and Intelligent Systems
    (CYBER), 2017, pp. 259-264.

    [10] Z. Yang and C. Lin, "Experimental Investigation on Flying Motion of Transverse Brachiation Robot," in 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2018, pp. 1402-1407.

    [11] C.-Y. Lin and Z.-H. Yang, "TRBR: Flight body posture compensation for transverse ricochetal brachiation robot," Mechatronics, vol. 65, p. 102307, 2020/02/01/ 2020.

    [12] J. Bertram, A. Ruina, C. Cannon, Y.-H. Chang, and M. Coleman, "A point-mass
    model of gibbon locomotion," The Journal of experimental biology, vol. 202, pp.
    2609-17, 11/01 1999. 64

    [13] D. Wan, H. Cheng, G. Ji, S. J. I. I. C. o. R. Wang, and Biomimetics, "Non-horizontal ricochetal brachiation motion planning and control for two-link Bio-primate robot," pp. 19-24, 2015.

    [14] H. Kolvenbach, E. Hampp, P. Barton, R. Zenkl, and M. Hutter, "Towards Jumping Locomotion for Quadruped Robots on the Moon," presented at the IEEE/RSJ
    International Conference on Intelligent Robots and Systems (IROS 2019), Macau,
    China, November 3-8, 2019, 2019. Available: http://hdl.handle.net/20.500.11850/405699

    [15] J. Burdick and P. Fiorini, "Minimalist Jumping Robots for Celestial Exploration," vol. 22, no. 7-8, pp. 653-674, 2003.

    [16] H. Tsukagoshi, M. Sasaki, A. Kitagawa, and T. Tanaka, "Design of a Higher Jumping Rescue Robot with the Optimized Pneumatic Drive," in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005, pp. 1276-1283.

    [17] S. A. Stoeter and N. Papanikolopoulos, "Kinematic motion model for jumping scout robots," IEEE Transactions on Robotics, vol. 22, no. 2, pp. 397-402, 2006.

    [18] M. Noh, S. Kim, S. An, J. Koh, and K. Cho, "Flea-Inspired Catapult Mechanism for Miniature Jumping Robots," IEEE Transactions on Robotics, vol. 28, no. 5, pp.
    1007-1018, 2012.

    [19] J. Koh, S. Jung, M. Noh, S. Kim, and K. Cho, "Flea inspired catapult mechanism with active energy storage and release for small scale jumping robot," in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 26-31.

    [20] V. Zaitsev, O. Gvirsman, U. B. Hanan, A. Weiss, A. Ayali, and G. Kosa, "Locustinspired miniature jumping robot," in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 553-558.

    [21] G.-H. Liu, H.-Y. Lin, H.-Y. Lin, S.-T. Chen, and P.-C. Lin, "A Bio-Inspired Hopping Kangaroo Robot with an Active Tail," Journal of Bionic Engineering, vol. 11, no. 4, pp. 541-555, 2014/10/01/ 2014.

    [22] "Bionic learning network-inspired by nature [OL]," 2013,
    http://www.festo.com/cms/en_corp/9617.htm.

    [23] L. Bai, W. Ge, X. Chen, Q. Tang, and R. Xiang, "Landing Impact Analysis of a
    Bioinspired Intermittent Hopping Robot with Consideration of Friction,"
    Mathematical Problems in Engineering, vol. 2015, p. 374290, 2015/07/28 2015.

    [24] A. De and D. Koditschek, "The Penn Jerboa: A Platform for Exploring Parallel
    Composition of Templates," 02/18 2015.

    [25] S. A. Stoeter, P. E. Rybski, M. Gini, and N. Papanikolopoulos, "Autonomous stairhopping with Scout robots," in IEEE/RSJ International Conference on Intelligent 65 Robots and Systems, 2002, vol. 1, pp. 721-726 vol.1.

    [26] E. J. I. S. R. B. Ackerman, "Boston dynamics sand flea robot demonstrates
    astonishing jumping skills," vol. 2, no. 1, 2012.

    [27] A. M. Johnson and D. E. Koditschek, "Toward a vocabulary of legged leaping," in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 2568-
    2575.

    [28] J. K. Yim and R. S. Fearing, "Precision Jumping Limits from Flight-phase Control in Salto-1P," in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 2229-2236.

    [29] D. W. Haldane, J. K. Yim, and R. S. Fearing, "Repetitive extreme-acceleration (14-g) spatial jumping with Salto-1P," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 3345-3351.

    [30] J. Zhao et al., "MSU Jumper: A Single-Motor-Actuated Miniature Steerable Jumping Robot," IEEE Transactions on Robotics, vol. 29, no. 3, pp. 602-614, 2013.

    [31] J. Zhao, T. Zhao, N. Xi, M. W. Mutka, and L. Xiao, "MSU Tailbot: Controlling Aerial Maneuver of a Miniature-Tailed Jumping Robot," IEEE/ASME Transactions on
    Mechatronics, vol. 20, no. 6, pp. 2903-2914, 2015.

    [32] J. Zhao, "Biologically inspired approach for robot design and control,"2015.

    [33] T. Libby et al., "Tail-assisted pitch control in lizards, robots and dinosaurs," Nature, vol. 481, no. 7380, pp. 181-184, 2012/01/01 2012.

    [34] R. W. Beard and T. W. McLain, Small unmanned aircraft: Theory and practice.
    Princeton university press, 2012.

    無法下載圖示 全文公開日期 2025/08/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE