簡易檢索 / 詳目顯示

研究生: 陳家豪
Jia-Hao Chen
論文名稱: 應用於微創手術之雙邊手術鉗機電系統設計與遠端操控實作
Mechatronic Design and Teleoperation Experiments of a Bilateral Forceps System for Minimally Invasive Surgery
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 陳亮光
Liang-kuang Chen
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 100
中文關鍵詞: 擾動估測外力估測雙邊控制雙邊通訊控制手術機器人
外文關鍵詞: Disturbance Observer, Reaction Force Observer, Bilateral Control, Bilateral Communication Control, Surgical Robot
相關次數: 點閱:279下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在針對手術機器人的力回饋響應進行遠端操控實驗探討。本研究自行設計一個一維自由度之雙邊手術鉗系統,採用擾動估測器與反力估測器控制演算法,使操作者操作雙邊手術鉗系統時,可以自動估測出此系統所受到的外力大小而不需配置力量感測器;並將估測出的外力大小,藉由雙邊控制器來達成雙邊力回饋的響應。本研究亦採用雙邊比例縮放的控制架構,在所開發系統上縮放雙邊力量的大小,最後並基於雙邊通訊架構進行雙邊手術鉗之遠端操作測試。我們將上述控制架構應用於雙邊手術鉗系統進行等速度運動之擾動估測、雙邊自由移動、雙邊接觸移動等實驗探討,並以力量感測器驗證本系統的可行性。


This thesis concentrates on investigation of the force feedback in a surgical robot system. The research presents the design for a one degree of freedom bilateral forceps system. Thanks to the applied disturbance observer and reaction force observer technique, during bilateral operation this system can automatically estimate the reaction force without the need of installing force sensors. In addition, this research also applies a bilateral control which can scale the position and force of the forceps system for better operation. A bilateral communication control is implemented to test the teleoperation behavior of this system. The bilateral control methods mentioned above are implemented for experimental investigation, including parameter identification for the used disturbance observer, bilateral free motion test, bilateral contact motion test, and bilateral communication motion test. The experimental results demonstrate that the bilateral forceps system is feasible even without using the force sensor feedback.

目錄 摘要 I Abstract II 致謝 III 目錄 VI 圖目錄 VII 表目錄 XI 符號表 XII 第一章 緒論 1.1 前言 1 1.2 文獻回顧與研究動機 3 1.3 本文貢獻與架構 7 第二章 雙邊手術鉗系統設計 2.1 運動學推導 8 2.2 系統架設 11 2.2.1 雙邊控制系統架設 11 2.2.2 雙邊通訊控制系統架設 12 2.2.3 雙邊通訊控制實體接線圖 13 2.2.4 雙邊手術鉗系統 14 2.2.5 馬達與驅動器 14 2.2.6 力量感測器與放大器 15 2.2.7 實驗硬體 16 第三章 雙邊控制理論與控制器設計 3.1 雙邊控制理論與原理 17 3.2 擾動估測器基本概念與原理 17 3.3 反力估測器基本概念與原理 19 3.4 等速度運動之擾動估測 20 3.5 雙邊控制器設計 22 3.5.1位置控制器設計 22 3.5.2力量控制器設計 23 3.5.3空間轉換矩陣(Hadamard matrix) 23 3.5.4雙邊控制架構 24 3.5.5雙邊比例控制器設計 .25 3.6 雙邊通訊控制理論與原理 27 3.6.1雙邊通訊控制架構 27 3.6.2雙邊通訊介紹 28 3.6.3 UDP通訊方塊介紹 30 3.7 雙邊操作力與重現性分析 31 第四章 實驗結果與討論 4.1 等速度運動之擾動估測實驗 33 4.2 雙邊自由移動實驗 41 4.2.1空載下之雙邊自由移動實驗 41 4.2.2負載下之雙邊自由移動實驗 44 4.3 雙邊接觸移動實驗 47 4.4 雙邊比例縮放實驗 53 4.5 雙邊通訊實驗 56 4.6 雙邊通訊控制實驗 61 第五章 結論與未來方向 5.1 結論 75 5.2 未來研究方向與建議 76 參考文獻

[1] G. T. Sung and S. Gill, “Robotic Laparoscopic Surgery: A Comparison of the Da Vinci and Zeus Systems,” Urology, Vol. 58, pp. 893-898, 2001.
[2] J. Arata, H. Takahashi and K. Konishi, “A remote surgery experiment between Japan-Korea using the minimally invasive surgical system,” Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida , May 2006.
[3] “達文西機器人,” http://www.mmh.org.tw/davinci/index.html
[4] “達文西機器人手術鉗末端器械,” http://www.cgh.org.tw/tw/ content/magazine/health/NEW/158/158-2.html
[5] C. D. Onal, C. Pawashe and M. Sitti, “A scaled bilateral control system for experimental 1-D teleoperated nanomanipulation applications,” Proceedings of the 2007 International Conference on Intelligent Robots and Systems, San Diego, USA, Oct 29 - Nov 2, 2007.
[6] B. Horan, D. Creighton and M. Jamshidi, “Bilateral haptic teleoperation of an articulated track mobile robot,” International Conference on System of Systms Engineering, San Antonio, Texas, April 16-18, 2007.
[7] G. S. Gupta, S. C. Mukhopadhyay and C. H. Messom, “Master–slave control of a teleoperated anthropomorphic robotic arm with gripping force sensing,” IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 6, pp. 2136-2145, 2006.
[8] M. Tavakoli, R.V. Patel and M. Moallem, “A Force Reflective Master-Slave System for Minimally Invasive Surgery,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, October 2003.
[9] J. P. Desai, G. holey, “A Modular Automated Laparoscopic Grasper with Three-
Dimensional Force Measurement Capability,” IEEE International Conference on Robotics and Automation, Roma, Italy, April 10-14, 2007, pp. 250-255.
[10] K. Kuwana, A. Nakai, K. Masamune, and T. Dohi, “A Grasping Forceps with a triaxial MEMS tactile sensor for quantification of stresses on organs,”
Proceedings of the 35th IEEE International Workshop on Medicine and Biology Society, Osaka, Japan, July3 - 7, 2013, pp. 4490-4493.
[11] I. Kuru, B. Gonenc, and M. Balicki, J. Handa, “Force Sensing Micro-Forceps for Robot Assisted Retinal Surgery,” Proceedings of the 34th IEEE International Conference on Medicine and Biology Society, San Diego, California, USA, Aug 28- Sep 1, 2012, pp. 1401-1404.
[12] W. J. Kim, S. M. Yoon and M. C. Lee, “Bilateral Control for Surgical Robot Using Sliding Perturbation Observer,” Proceedings of Annual Conference on Science, Nagoya, Japan Sep 14-17, 2013.
[13] S. M. Yoon, W. J. Kim and M. C. Lee, W. H. Choi, “Bilateral control for haptic laparoscopic surgery robot,” Proceedings of the 44th IEEE International Symposium on Robotic, Seoul, Oct 24-26, 2013, pp. 1-5.
[14] Z. Du, Z. Liu and H. Wang, “A Bilateral Control Method for Surgical Robots,” Proceedings of 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, Aug 5 - 8, 2011, pp. 1080-1085.
[15] M. Yaryan, M. Naraghi and S.M. Rezeai, “Bilateral nonlinear teleoperation for flexible link surgical robot with vibration control,” Proceedings of the 19th Iranian conference on Biomedical Engineering, Tehran, Iran, Dec 21 - 22, 2012, pp. 101-106.
[16] K. Kawashima,K. Tadano and B. Hannaford, “Model-based passivity control for bilateral teleoperation of a surgical robot with time delay,” Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems , Nice, France, Sep 22-26, 2008, pp. 1427-1432.
[17] Y. Fu, Y. Yu, S. Wang, “Master-slave control strategy for abdominal minimally invasive surgery robotic system,” Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand, December 7-11, 2011, pp. 460-466.
[18] 周沛男, “時間延遲下遙控機器人之雙向控制,” 國立交通大學電機與控制工程研究所碩士論文, 2001.
[19] G. Song, S. Guo and Q. Wang, “A Tele-operation system based on haptic feedback,” Proceedings of the 2006 IEEE International Conference on Information Acquisition, Weihai, Shandong, China, August 20 - 23, 2006, pp. 1127-1131.
[20] H. Li, K. Totaro and K. Kawashima, “Achieving force perception in master-slave manipulators using pneumatic artificial muscles,” Proceedings of Annual Conference on Science, Akita, Japan, August 20 - 23, 2012, pp. 1342-1345.
[21] K. Tadano and K. Kawashima, “Development of 4-DOFs forceps with force sensing using pneumatic servo system,” Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida , May 2006, pp. 2250-2255.
[22] W. Semere, M. Kitagawa and M. Okamura, “Teleoperation with sensor/actuator asymmetry,” Proceedings of the 12th IEEE International Symposium on Robotic, Phuket, Thailand , March27-28 ,2004 , pp. 121-127.
[23] D. Zhao and D. Liu, “Clinical training technology for vascular interventional surgery robot system based on master-slave expansion,” Proceedings of 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, August 5 - 8,2012, pp. 604-610.
[24] S. Katsura, N. Tsunashima, W. Yamanouchi and Y. Yokokura, “Preservation and reproduction of real-world haptic information,” Proceedings of the IEEE International Symposium on Power Electronics , Sapporo, June 21-24, 2010, pp. 2216-2221.
[25] T. Shimono, S. Katsura, K. Ohnishi, “Abstraction and reproduction of force sensation from real environment by bilateral control,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 2, pp. 907-918, 2007.
[26] T. Shimono, S. Katsura, K. Ohnishi, “Bilateral Force Feedback Control Based on Wideband Acceleration Control,” Proceedings of International Conference on Mechatronics, Kumamoto, Japan, May 8-10, 2007, pp. 1-6.
[27] H. Wang, K. H. Low, and M.Y. Wang, “A Transparent Bilateral Controller for Teleoperation Considering the Transition of Motion,” Proceedings of 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, April 10-14, 2007, pp. 4319-4324.
[28] T. Kosugi, K. Ohnishi, “An approach to controller design of bilateral control with dimensional scaling,” Proceedings of the 12th IEEE International Workshop on Advanced Motion Control, Sarajevo, Bosnia and Herzegovina,
March 25-27, 2012, pp. 1-6.
[29] T. Kosugi, K. Ohnishi, “Improvement of operationality for bilateral control based on nominal mass design in disturbance observer,” Proceedings of the 31th IEEE International Conference on Industrial Electronics Society, Kumamoto, Japan, Nov. 6-10, 2005, pp. 1-6.
[30] S. Katsura, W.Iida, K. Ohnishi, “Medical mechatronics—An application to haptic forceps,” Annual Reviews in Control, pp. 6-16, 2005.
[31] T. Shimono, S. Katsura, K. Ohnishi, “Telerobotic‐assisted bone‐drilling system using bilateral control with feed operation scaling and cutting force scaling,” The International Journal of Medical Robotics and Computer Assisted Surgery , Vol. 8, No. 2, pp. 221-229, 2012.
[32] Technical note, “Model LBS Miniature Compression load button”.
[33] Technical note, “Model SGA AC/DC Powered Signal Conditioner”.
[34] A. Suzuki, K. Ohnishi, “Novel Four-Channel Bilateral Control Design for Haptic Communication Under Time Delay Based on Modal Space Analysis,” IEEE Transactions on Control Systems Technology, Vol. 21, No. 3, pp. 882-890, May 2013.
[35] U. Tumerdem, K. Ohnishi, “Haptic Consensus in Bilateral Teleoperation,” Proceedings of 2007 IEEE International Conference on Mechatronics, Kumamoto Japan, May 8-10, 2007, pp. 1-6.
[36] D. Tian, D. Yashiro, “Wireless haptic communication under varying delay by switching-channel bilateral control with energy monitor,” IEEE/ASME Transactions on Mechatronics, Vol. 17, No. 3, pp. 488-498, June 2012.
[37] A. Kuzu, S. Bogosyan and M. Gokasa “Network in the loop platform for research and training in bilateral control,” Proceedings of the 12th IEEE International Workshop on Advanced Motion Control, Sarajevo, March 25-27, 2012, pp. 1-6.
[38] S. Yajima, S. Katsura, “Simplified Integrated Reproduction of Human Motion Based on Motion-Copying System,” Proceedings of the 5th IEEE International Conference on Human System Interactions, Perth, June 6-8, 2012, pp. 110-115.
[39] K. Mima, M. Honda,T. Miyoshi, “Telemanipulation with a humanoid robot hand/arm between USA and Japan,” Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, May 6-10, 2013, pp. 3618-3624.
[40] K. Mima, M. Honda, T. Miyoshi, “Haptic communication using multiple-routes in data transmission” Proceedings of the Annual Conference on Science, Tokyo, Japan, September 13-18, 2011, pp. 1361-1366.
[41] S. Yajima, S. Katsura, T. Miyoshi, “Bilateral control using compressor/deco mpressor under the low-rate communication network,” Proceedings of the 2009 IEEE International Conference on Mechatronics, Malaga, Spain, April 2009, pp. 1-6.
[42] B. Gao, K. Hu and N. Xiao, “Mechanical analysis and haptic simulation of the catheter and vessel model for the MIS VR operation training system,” Proceedings of the 2013 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, August 4-7, 2013, pp. 1372-1377.
[43] J. Li, Y. Guo and H. Zhang, Y. Xie, “A master-slave robotic simulator based on GPU Direct,” Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, October 7-12, 2012, pp. 5203-5207.
[44] A. Talasaz, R.V. Patel and M.D. Naish, “Haptics-enabled teleoperation for robot-assisted tumor localization,” Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, May 3-8, 2010, pp. 5340-5345.
[45] M. Tavakoli, A. Aziminejad and M. Moallem, “High-fidelity bilateral teleoperation systems and the effect of multimodal haptics,” IEEE Transactions on Systems, Vol. 37, No. 6, pp. 1512-1528, December 2007.
[46] K. Kawashima, K. Tadano and G. Sankaranarayanan, B. Hannaford, “Bilateral teleoperation with time delay using modified wave variables,” Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, Sep22-26, 2008, pp. 424-429.
[47] T.Namerikawa, “Bilateral control with constant feedback gains for teleoperation with time varying delay,” Proceedings of the 48th IEEE International Conference on Decision and Control, Shanghai,China, December 16-18, 2009, pp. 7527-7532.
[48] T.Namerikawa, “A predictive control approach and interactive gui to enhance distal environment rendering during robotized tele-echography : Interactive platform for robotized telechography,” Proceedings of the 12th IEEE International Conference on Bioinformatics and Bioengineering, Larnaca, Cyprus, November 11-13, 2012, pp. 233-239.
[49] K. Tanida, T. Takahiro and F. Mitome, “Function separation for 2-DOF haptic surgical forceps robots driven by multi drive linear motors,” Proceedings of the 12th IEEE International Workshop on Advanced Motion Control, Sarajevo, March 25-27, 2012, pp. 1-6.
[50] C. Ionete, D. Sendrescu and D. Popescu, “Ethernet for networked control,” Proceedings of the Annual Conference on Science, Taipei, Taiwan, August 18-21, 2010.
[51] K. H. Low, H. Wang and M. Y. Wang, “On the development of a real time control system by using xpc target: Solution to robotic system control,” Proceedings of the 2005 IEEE International Conference on Automation Science and Engineering, Edmonton, Canada, August 1- 2, 2005, pp. 345-350

QR CODE