簡易檢索 / 詳目顯示

研究生: 陳枝政
Jhih-Jheng Chen
論文名稱: 電漿氧化製備銅氧化物及銅-二氧化矽複合材料之太陽能選擇性吸收膜之性質研究
The study of Cu oxide and Cu-SiO2 composite materials as solar spectrally selective absorbers fabricated by plasma oxidation technology
指導教授: 周賢鎧
Shyankay Jou
朱瑾
Jinn P. Chu
口試委員: 黃柏仁
Bohr-Ran Huang
胡毅
Yi 1Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 123
中文關鍵詞: 太陽能選擇性吸收膜電漿氧化太陽能
外文關鍵詞: Solar spectrally absorber, Plasma oxidation, Solar energy
相關次數: 點閱:196下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用磁控式濺鍍系統沈積為薄膜生成的主要製程,結合製程技術快速且低氧化溫度之電漿氧化製程,製備本實驗所需之太陽能選擇性吸收膜,並探討其吸收膜之光學性質及結晶結構。第一部份實驗為沈積一層Cu薄膜在不鏽鋼基材與石英玻璃上,電漿氧化處理成CuO-Cu2O-Cu之吸收膜後,利用XRD量測確認成份,並討論氧化溫度及薄膜厚度對Cu薄膜組成之變化與光學性質。第二部份則沈積一層Cu-Si複合薄膜在不鏽鋼基材與石英玻璃上,電漿氧化處理成Cu-SiO2複合吸收膜後,利用UV-Vis-NIR吸收光譜確認Cu的狀態變化,並討論表面結構、SPR特性及覆蓋一層SiO2抗反射層對Cu-SiO2複合吸收膜組成之變化與光學性質。
    本實驗利用X光繞射分析儀量測分析吸收膜組成成份與相變化,利用場發射掃瞄式電子顯微鏡分析觀察吸收膜表面型態結構、晶粒大小與表面粗糙度,利用紫外光-可見光-近紅外光光譜分析儀,及傅立葉轉紅外線光譜分析儀測量吸收膜的光學性質。
    實驗結果Cu薄膜部份顯示光學性質並不如預期的,原因一是因為成份大多為Cu2O之氧化物,因Cu2O具有較寬能隙(Eg)約為2.2 eV,要有較高的太陽光吸收度(α)要有非常厚之厚度,且會有一定的熱發射率(ε);二是CuO(Eg=1.1 eV)之氧化層厚度不夠,此結果造成Cu薄膜之α值不能達一般要求,此部份目前最佳參數為薄膜厚度2 µm,其α為0.71、ε為0.08。Cu-Si複合薄膜部份則顯示其光學性質要來得比Cu薄膜好很多,原因一是成份比例控制合宜穩定;二是表面晶粒大小使得SPR特性有所提升,此部份本實驗目前的最佳參數,又分為一是薄膜厚度100 nm未覆蓋SiO2抗反射層,其α為0.82、ε為0.22,二是薄膜厚度100 nm並覆蓋SiO2抗反射層,其α為0.89、ε為0.35。


    This thesis uses the magnetron sputter to deposit prime film, and combine with low-temperature plasma oxidation process, to produces solar energy selective absorbers, and then probe optical characteristic and crystal structure of absorbers. The first part of study included deposition a Cu film on stainless steel and quartz glass, plasma oxidation to form the CuO-Cu2O-Cu absorbers. The second part of study included deposition Cu-Si composite films on stainless steel and quartz glass, plasma oxidation to form the Cu-SiO2 composite absorbers, and examination of surface structure, and SPR characteristic. Furthermore a SiO2 anti-reflective(AR) layer was covered on Cu-SiO2 composite absorbers to improve properties of solar selective absorbers. XRD, SEM, UV-Vis-NIR, and FTIR were utilized to analysis solar spectrally selective absorbers.
    The results indicated that the part of oxidized Cu film does not exhibit to good optical characteristic as expected. The oxidized Cu films contained excess Cu2O oxide but few CuO. Cu2O has a band gap(Eg) of 2.2 eV, in order to form high solar absorptance(α), it must have enough thickness which yields a certain thermal emittance(ε). Optimum parameter of film thickness of Cu is 2 µm, and α is 0.71, ε is 0.08 for the solar absorber made by oxidizing Cu films. Solar absorber properties of Cu-Si composite film are best than those of Cu film. The Cu-Si composite with a film thickness of 100 nm, and without a SiO2 AR layer, has an α of 0.82, and an ε of 0.22, after oxidztion process. The oxidized Cu-Si film with a SiO2 AR layer, has an α of 0.89, and an ε of 0.35.

    目錄 摘要………………………………………………………………………………i Abstract…………………………………………………………………………ii 致謝………………………………………………………………………………iii 目錄………………………………………………………………………………iv 圖目錄……………………………………………………………………………vi 表目錄……………………………………………………………………………ix 第一章、 前言………………………………………………………………… 1 第二章、實驗原理與文獻回顧…………………………………………………3 2.1、太陽能…………………………………………………………………… 3 2.1.1、平板型熱太陽能收集器……………………………………………… 4 2.1.2、選擇性表面…………………………………………………………… 5 2.1.2.A、選擇性表面之光學性質…………………………………………… 5 2.1.2.B、選擇性表面之性質量測…………………………………………… 7 2.2、銅、氧化銅及氧化亞銅之特性………………………………………… 11 2.2.1、銅……………………………………………………………………… 11 2.2.2、氧化銅………………………………………………………………… 11 2.2.3、氧化亞銅……………………………………………………………… 12 2.3、熱氧化文獻回顧………………………………………………………… 14 2.4、電漿氧化文獻回顧……………………………………………………… 16 2.4.1、電漿定義……………………………………………………………… 16 2.4.2、電漿氧化…………………………………………………………… 16 2.5、表面電漿子共振………………………………………………………… 19 2.5.1、金屬-介電質複合膜…………………………………………… 19 2.5.2、表面電漿共振文獻回顧…………………………………………19 笫三章、實驗方法與步驟………………………………………………………21 3.1、實驗流程………………………………………………………………… 21 3.2、實驗用材料與藥品規格………………………………………………… 22 3.3、實驗儀器與裝置………………………………………………………… 23 3.3.1、磁控式濺鍍系統……………………………………………………… 24 3.3.2、Co-sputter磁控式濺鍍系統………………………………………… 25 3.3.3、微波電漿氧化系統…………………………………………………… 26 3.3.4、RF氧氣電漿氧化系統………………………………………………… 27 3.4、實驗步驟………………………………………………………………… 28 3.4.1、基材清洗之前處理…………………………………………………… 28 3.4.2、銅薄膜之製備………………………………………………………… 29 3.4.3、Cu-Si複合薄膜之製備…………………………………………………30 3.4.4、微波電漿氧化製程…………………………………………………… 30 3.4.5、RF氧氣電漿氧化製程………………………………………………… 31 3.5、分析儀器設備…………………………………………………………… 32 3.5.1、X光繞射儀………………………………………………………………32 3.5.2、場發射掃瞄式電子顯微鏡…………………………………………… 32 3.5.3、能量散佈光譜儀……………………………………………………… 32 3.5.4、紫外光-可見光-近紅外光光譜分析儀……………………………… 33 3.5.5、傅立葉轉紅外線光譜分析儀………………………………………… 34 第四章、結果與討論……………………………………………………………35 4.1、Cu2O-CuO-Cu吸收膜………………………………………………………35 4.1.1、微波電漿氧化溫度的變化對吸收膜光學性質之影響……………… 35 4.1.1.A、氧化溫度190℃~300℃ (1公分)……………………………………36 4.1.1.B、氧化溫度150℃~260℃ (2公分)……………………………………50 4.1.1.C、氧化溫度130℃~200℃ (3公分)……………………………………62 4.1.2、Cu2O-CuO-Cu吸收膜之結論…………………………………… 74 4.2、Cu-SiO2複合吸收膜………………………………………………………75 4.2.1、高功率電漿氧化…………………………………………………75 4.2.1.A、SPR特性分析……………………………………………… 76 4.2.1.B、成份比例變化對吸收膜光學性質之影響…………………78 4.2.1.C、SiO2 AR Layer對於吸收膜光學性質之影響…………… 83 4.2.2、低功率電漿氧化……………………………………………………… 87 4.2.2.A、成份比例變化對吸收膜光學性質之影響………………………… 87 4.2.2.B、SiO2 AR Layer對於吸收膜光學性質之影響………………………92 4.2.2.C、基材性質對於吸收膜光學性質之影響…………………………… 98 4.2.3、Cu-SiO2複合吸收膜之結論…………………………………… 100 第五章、結論……………………………………………………………………101 5.1、Cu2O-CuO-Cu吸收膜………………………………………………………101 5.2、Cu-SiO2複合吸收膜………………………………………………………101 參考文獻…………………………………………………………………………103 附錄

    參考文獻
    [1] 陳維新, 「能源概論」, 高立圖書有限公司, 民國97年2月。
    [2] 經濟部能源局, Energy monthly, 台北, 2008年5月。
    [3] F. Chen, S.-M. Lu and Y.-L. Chang, “Renewable energy in Taiwan: Its developing status and strategy”, Energy 32 (2007) 1634-1646.
    [4] M. Farooq and A.R. Iftikhar, “Optimisation of metal sputtered and electroplated substrates for solar selective coatings”, Rene. Energy, 33 (2008) 1275-1285.
    [5] L.C. Mόnica, M.S Angel, B. Alex and G.R. Pedro, “Electrochemical deposition of black nickel solar absorber coatings on stainless steel AISI316L for thermal solar cells”, Solar Energy Mater. & Solar Cells, 87 (2005) 685–694.
    [6] A.E. Rakhshani and J. Varghese, ”Galvanostatic deposition of thin films of cuprous oxide”, Solar Energy Mater., 15 (1987) 237-248.
    [7] J. Vaidyanatha Iyer, S. B. Gadgil, R. Thangaraj, A. K. Sharma, B. K. Gupta and O. P. Agnihotri, “Spectrally selective copper oxide films”, Appl. Energy, 14 (1983) 65-75.
    [8] G.E. Carver, E.E. Chain, J. Physique, “CVD molybdenum films of high infrared reflectance and significant solar absorptance”, Jour. de Phys (Paris), Colloque 42 (1981) c1. 203-211.
    [9] Q.C. Zhang, “Stainless-steel - AIN cermet selective surfaces deposited by direct current magnetron sputtering technology”, Solar Energy Mater. & Solar Cells 52 (1998) 95-106.
    [10] K. Gelin, T. Boström and E. Wäckelgård, “Infrared reflectance of direct current magnetron sputter deposited films of Ni93V7, Cu89Ni10Fe1(Mn) and Cu”, Thin Solid Films, 437 (2003) 25-33.
    [11] M. Adsten, R. Joerger, K. Jäyyendahl and E. Wäckelgård, “Optical characterization of industrially sputtered nickel-nickel oxide solar selective surface”, Solar Energy, 68 (2000) 325-328.
    [12] Per lsakson, “Flat plate thermal solar collectors”, Byggforskningsrådet, 1980.
    [13] T.J. Hsueh, C.L. Hsu, S.J. Chang, P.W. Guo, J.H. Hsieh and I.-C. Chen, “Cu2O/n-ZnO nanowire solar cells on ZnO:Ga/glass templates”, Scripta Materialia, 57 (2007) 53-56.
    [14] H. Tanaka, T. Shimakawa, T. Miyata, H. Sato and T. Minami, “Effect of AZO film deposition conditions on the photovoltaic properties of AZO-Cu2O heterojunctions”, Appl. Surf. Sci., 244 (2005) 568-572.
    [15] H. Tanaka, T. Shimakawa, T. Miyata, H. Sato and T. Minami, “Electrical and optical properties of TCO-Cu2O heterojunction devices”, Thin Solid Films, 469 (2004) 80-85.
    [16] M. Izaki, T. Shinagawa, K.T. Mizuno, Y. Ida, M. Inaba and A. Tasaka, “Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device”, J. Phys. D: Appl. Phys., 40 (2007) 3326-3329.
    [17] H. Tabor, “Selective radiation I-Wavelength discrimination”, Bull. Res. Counc., 5A (1956) 119-128.
    [18] H. S. Potdar, N. Pavaskar, A. Mitra and A.P.B. Sinha, “Solar selective copper-black layers by an anodic oxidation process”, Solar Energy Mater., 4 (1981) 291-299.
    [19] A. Aveline and I.R. Bonilia, “Spectrally selective surfaces of cuprous oxide(Cu2O)”, Solar Energy Mater., 5 (1981) 211-220.
    [20] 楊德仁, 「太陽能電池材料」, 五南圖書出版股份有限公司, 2008年6月。
    [21] 沈輝, 「太陽能光電技術」, 五南文化出版, 2008年。
    [22] 羅運俊,何梓年,王長貴,「太陽能發電技術與應用」, 新文京開發出版股份有限公司, 2007年。
    [23] P. Richharia, “Optical and microstructural analyses of a chemically converted textured black copper selective surface”, Solar Energy Mater., 20 (1990) 199-214.
    [24] H.J. Brown-Shaklee, W. Carty, D.D. Edwards, “Spectral selectivity of composite enamel coatings on 321 stainless steel”, Solar Energy Mater. & Solar cells, 93 (2009) 1404-1410.
    [25] M.A. Angadi and K. Nallamshetty, “Spectral selectivity of Al2O3-Cu-Al2O3 multilayer films”, Solar Energy Mater., 17 (1988) 137-142.
    [26] H.C. Barshilia, N. Selvakumar and K.S. Rajam, “Structure and optical properties of pulsed sputter deposited CrxOy/Cr/Cr2O3 solar selective coatings”, J. Appl. Phys., 023507 (2008) 103-114.
    [27] C.E. Kennedy, “Review of Mid-to-high temperature solar selective absorber materials”, Nati. Rene. Energy Lab., 2002, 7:2.
    [28] K. Gelin, T. Boström and E. Wäckelgård, “Thermal emittance of sputter deposited infrared reflectors in spectrally selective tandem solar absorbers”, Solar Energy, 77 (2004) 115-119.
    [29] G. Makiwa, G. Katumba and L. Olumekor, “Synthesis and optical characterization of C-SiO2 and C-NiO sol-gel composite films for use as selective solar absorbers”, Proc. of SPIE, 7046 (2008) 1-8.
    [30] 張志純譯, 「太陽能之理論及應用」, 徐氏基金會出版, 民國67年。
    [31] R.B. Pettit, “Total hemispherical emittance measurement apparatus for solar selective coatings”, SAND-75-0079, Albuquerque, NM: Sandia National Laboratory, 1975.
    [32] 廖勝權, 「形成多孔性銅之研究」, 國立台灣科技大學材料科技研究所碩士學位論文, 民國97年1月。
    [33] H. Tabor, “Solar collector developments in Israel”, Solar Energy, 3 (1959) 8-9.
    [34] R.V. Dunkle, D.K. Edwards, J.T. Gier and J.T. Bevans, “Solar reflectance integrating sphere”, Solar Energy, 4 (1960) 27-29.
    [35] S. Zhao and E. Wäckelgård, “The optical properties of sputtered composite of Al-AlN”, Solar Energy Mater. & Solar Cells, 90 (2006) 1861-1874.
    [36] C. Sella, S. Chenot, V. Reillon and S. Berthier, “Influence of the deposition conditions on the optical absorption of Ag-SiO2 nanocermet thin films”, Thin Solid Films, 517 (2009) 5848-5854.
    [37] H.C. Hottel and T.A. Unger, “The properties of a copper oxidealuminum selective black surface absorber of solar energy”, Solar Energy, 3 (1959) 10-15.
    [38] R.B. Gillette, “Selectively emissive materials for solar heat absorbers”, Solar Energy, 4 (1960) 24-32.
    [39] R.R. Marchini and T.L. Howard, “Maxwell-Garnett theory analysis of thick Pbs-Al selective absorbers”, Solar Energy, 40 (1988) 147-150.
    [40] G.E. McDonald, “Spectral reflectance properties of black chrome for use as a solar selective coating”, Solar Energy, 17 (1975) 119-122.
    [41] J. Jurisson, R.E. Peterson and H.Y.B. Mar, “Principles and applications of selective solar coatings”, J. Vac. Sci. Technol., 12 (1975) 1011-1015.
    [42] D.M. Mattox and R.R. Sowell, “High absorptivity solar absorbing coatings”, J. Vac. Sci. Technol., 11 (1974) 793-796.
    [43] A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, “Heterojunction solar cell with 2% efficiency based on a Cu2O substrate”, Appl. Phys. Lett., 88 (2006) 163502.
    [44] Y. Tsur, and I. Riess, “Self-compensation in semiconductors”, Phys. Rev. B, 60 (1999) 8138.
    [45] O. Porat, and I. Riess, “Defect chemistry of Cu2−yO at elevated temperatures. Part II: Electrical conductivity, thermoelectric power and charged point defects”, Solid State Ionics, 81 (1995) 29.
    [46] A. Roos, T. Chibuye and B. Karlsson, “Properties of oxidized copper surfaces for solar applications I”, Solar Energy Mater., 7 (1983) 453-465.
    [47] A. Roos and B. Karlsson, “Properties of oxidized copper surfaces for solar applications II”, Solar Energy Mater., 7 (1983) 467-480.
    [48] W. Gao, H. Gong, J. He, A. Thomas, L. Chan and S. Li, “Oxidation behaviour of Cu thin films on Si wafer at 175-400℃”, Mater. Lett., 51 (2001) 78-84.
    [49] 莊達人, 「VLSI製造技術」, 高立圖書有限公司, 民國84年3月。
    [50] N. Birks and G.H. Meier, “Introduction to high temperature oxidation of metals”, Edward Arnold London, 1983.
    [51] R.E. Hahn and B.O. Seraphin, “Spectrally selective surfaces for photothermal solar energy conversion”, Thin Solid Films, 10 (1978) 1-60.
    [52] K. Brudzewski, “Ellipsometric investigations of a substrate-thin film system with rough boundaries using the equivalent film theory”, Thin Solid Films, 61 (1978) 183-191.
    [53] D. Rönnow, T. Lindström, J. Isidorsson and C.G. Ribbing, “Surface roughness of oxidized copper films studied by atomic force microscopy and spectroscopic light scattering”, Thin Solid Films, 325 (1998) 92-98.
    [54] B. Chapman, “Glow discharge Process”, John Wiley & Sons., New York, 1982.
    [55] Herman V. Boenig, “Plasma science and technology”, Cornell University Press, 1982.
    [56] V. Kottler, M.F. Gillies, A.E.T. Kuiper, “An in situ x-ray photoelectron spectroscopy study of AlOx spin tunnel barrier formation”, J. Appl. Phys., 89 (2001) 3301-3306.
    [57] M.F. Gillies, A.E.T. Kuiper, R. Coehoorn and J.J.T.M Donkers., “Compositional, structural, and electrical characterization of plasma oxidized thin aluminum layers for spin-tunnel junctions”, J. Appl. Phys., 88 (2000) 429-434.
    [58] A. Vesel, M. Mozetic, A. Zalar, “Oxidation of AISI 304L stainless steel surface with atomic oxygen”, Appl. Surf. Sci., 200 (2002) 94-103.
    [59] M. Mozetic, A. Zalar, U. Cvelbar and D. Babic, “AES characterization of thin oxide films growing on Al foil during oxygen plasma treatment”, Surf. Interface Anal., 36 (2004) 986-988.
    [60] N. Bellakhal, K. Draou, B.G. Chéron, J.L. Brisset, “Copper oxides formation by a low pressure RF oxygen plasma”, Mater. Sci. Eng., B41 (1996) 206-216.
    [61] D.M. Sun, “Kinetics of the growth of Al-oxidized films in a high-frequency oxygen plasma”, Vacuum, 47 (1996) 113-117.
    [62] C.A. Arancibia-Bulnes, C.A. Estrada and J.C. Ruiz-Suárez, “Solar absorptance and thermal emittance of cermets with large particles”, J. Phys. D: Appl. Phys., 33 (2000) 2489
    [63] Carl M. Lampert, “Coatings for enhanced photothermal energy collection I: Selective absorbers”, Solar Energy Mater., 1 (1979) 319-341.
    [64] 范光照,黃漢邦,陳炳輝,張所鋐,顏家鈺, 「奈米工程概論」, 普林斯頓國際有限公司, 92年8月。
    [65] D.L. Douglass and R.B. Pettit, “The selective solar absorptance of in situ-grown oxide films on metals”, Solar Energy Mater., 4 (1981) 383-402.
    [66] A. Scherer, O.T. Inal and A.J. Singh, “Investigation of copper oxide coatings for solar selective applications” Solar Energy Mater., 9 (1983) 139-158.
    [67] T. Boström, E. Wäckelgård and G. Westin, “Solution-chemical derived nickel-alumina coatings for thermal solar absorbers”, Solar Energy, 74 (2003) 497-503.
    [68] T. Boström, “Solution-chemically derived spectrally selective solar absorbers: with system perspectives on solar heating”, ACTA Universitatis Upsaliensis Uppsala, 2006.

    QR CODE