簡易檢索 / 詳目顯示

研究生: 陳皓
Hao - Chen
論文名稱: 鋯-鋁-銀非晶區域之判定與 鋯-鋁-銀三元系統於500oC之相平衡
Determination of the amorphous regions of the Zr-Al-Ag ternary system and the phase equilibrium of Zr-Al-Ag ternary system at 500oC
指導教授: 顏怡文
Yee-wen Yen
口試委員: 朱瑾
Jinn Chu
陳志銘
Chih-ming Chen
吳子嘉
Tzu-chia Wu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 211
中文關鍵詞: 三元系統鋯-鋁-銀非晶質相平衡
外文關鍵詞: ternary system, Zr-Al-Ag, amorphous, phase equilibrium
相關次數: 點閱:218下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

金屬玻璃擁有高強度、耐磨耗、耐腐蝕性與良好的機械性質,引起許多學者對於這塊領域有極大的興趣。鋯基非晶質合金具有良好的玻璃形成能力和較大的過冷區,可以利用簡易的設備,製備品質良好之塊材金屬玻璃。因此本研究以鋯為主要元素,添加鋁與銀,設計四十八組不同組成之合金,利用電弧熔煉爐製備出塊材非晶質合金,為了與非晶質合金進行比較,因此將其製備好之合金進行500oC熱處理1440小時。經由X光繞射與示差掃描熱量分析儀等分析,判別各組成是否為非晶質合金,其結果顯示在Zr40-65Al10-50Ag15-35為非晶區域。
此實驗中並沒有發現三元化合物,溫度於500oC所存在的平衡相皆為鋯-鋁、鋯-銀與鋁-銀二元系統的平衡相。鋯-鋁-銀三元系統於500oC下存在著十二個三相區、二十五個雙相區與十四個單相區。


The metallic glasses have high strength, wear resistance, corrosion resistance and excellent mechanical properties. Thus, many research groups have great interest to develop them. The Zr-based amorphous alloys have the excellent glass forming ability and large super-cooling regions. Meanwhile, they can be prepared by using the simple equipment to form the high quality bulk metallic glass. In this study, 48 Zr-Al-Ag alloys with different compositions were prepared to form bulk metallic glasses. The amorphous and crystalline regions were determined, as well. To compare with the bulk metallic glass results, the phase equilibra of the Zr-Al-Ag ternary system at 500oC was investigated. The result shows that the amorphous region of Zr-Al-Ag alloys is Zr40-65Al10-50Ag15-35. There are 12 three-phase regions, 25 two-phase regions and 14 single-phase regions in the Zr-Al-Ag ternary system and no ternary compounds were found at 500oC.

目錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XVIII 第一章 前言 1 第二章 文獻回顧 3 2-1 非晶質合金歷史與發展 3 2-2 非晶質合金之概述與形成條件 4 2-2-1 非晶質合金概述 4 2-2-2 塊材非晶質合金 6 2-2-3 實驗歸納法則 7 2-2-4 熱力學理論 8 2-2-5 玻璃轉換溫度(glass transition temperature, Tg) 8 2-2-6 簡化玻璃轉換溫度(reduced glass transition temperature,Trg) 9 2-2-7 γ值 10 2-3非晶質合金特性與應用 10 2-3-1機械性質 10 2-3-2磁性質 11 2-3-3耐蝕性 11 2-3-4非晶質合金之應用 13 2-4非晶質合金的製作方法 16 2-4-1固態→固態 16 2-4-2液態→固態 17 2-4-3氣態→固態 18 2-5非晶質合金之種類 25 2-5-1 Zr基非晶質合金 26 2-5-2 Cu基非晶質合金 28 2-5-3 Ni基非晶質合金 29 2-5-4 Fe基非晶質合金 30 2-6相平衡 30 2-6-1 Ag-Al 二元系統相圖 31 2-6-2 Ag-Zr 二元系統相圖 32 2-6-3 Al-Zr 二元系統相圖 33 第三章 實驗方法 34 3-1鋯-鋁-銀三元合金系統非晶區域之判斷 34 3-1-1鋯-鋁-銀三元合金鑄錠之製備 34 3-1-2塊材金屬玻璃製作-銅模鑄造法 36 3-1-3非晶質合金判別與分析 38 3-2鋯-鋁-銀三元相平衡實驗方法 40 3-2-1合金配置 40 3-2-2合金分析 42 第四章 結果與討論 43 4-1鋯-鋁-銀非晶區域與結晶區域之判定 43 4-1-1 Zr含量為70-90 at.%合金之探討 44 4-1-2 Zr含量為40-60 at.%合金之探討 59 4-1-3 Zr含量為10-30 at.%合金之探討 96 4-1-4非晶質合金與結晶合金之比較 137 4-2 500oC下鋯-鋁-銀三元系統相平衡 146 第五章 結論 187 參考文獻 188

[1] A. Inoue, “Bulk Amorphous Alloys Practical Characteristics and Applications Institute for Material Research” , Tohoku University, Sendai, Japan (1999)
[2] J. P. Chu, C. L. Chiang, T. G. Nieh, Y. Kawamura, “Superplasticity in a bulk amorphous Pd-40Ni-20P alloy:a compression study” , Intermetallics, Vol. 10, pp. 1191-1195 (2002)
[3] W. Zhang, A. Inoue, “Formation and Mechanical Strength of New Cu-Based Bulk Glassy Alloys with Large Supercooled Liquid Region” , Materials Transactions, Vol. 45, No. 4, pp. 1210-1213 (2004)
[4] N. Nishiyama, K. Amiya, A. Inoue, “Bulk Metallic Glasses for Industrial Products” , Materials Transactions, Vol. 45, No. 4, pp. 1245-1250 (2004)
[5] A. Inoue, “Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys” , Acta Materialia, Vol. 48, 279-306 (2000)
[6] A. Inoue, T. Zhang, T. Masumoto,“Preparation of Bulk Amorphous Zr-Al-Co-Ni-Cu Alloys by Copper Mold Casting and Their Thermal and Mechanical Properties” , Materials Transactions (JIM), Vol. 36, pp. 391-398 (1995)
[7] W. Klement, R. H. Wilens and P. Duwez, “Non-crystalline Structure in Solidified Gold–Silicon Alloys” , Nature, Vol. 187, pp. 869 (1960)
[8] 吳學陞,新興材料-塊狀非晶質金屬材料,工業材料雜誌,工研院材料所,第149期,第1595頁 (1999)。
[9] A. Ioune, T. Zhang and T. Masumoto, “Al-La-Ni Amorphous Alloys with a Wide Supercooled Region” , Materials Transactions (JIM), Vol. 30, pp. 965-972 (1989)
[10] A. Inoue, A. Kato, T. Zhang, S. G. Kim, T. Masumoto,“Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced”, Materials Transactions (JIM), Vol. 32, pp. 609-616 (1991)
[11] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, “Cu-based Bulk Glassy Alloys with High Tensile Strength of Over 2000 MPa” , Journal of Non-Crystalline Solids, Vol. 304, pp. 200-209 (2002)
[12] A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, “Mg-Cu-Y Amorphous Alloys With High Tensile Strength Produced by a High-Pressure Die Casting Method”, Materials Transactions (JIM), pp. 937-945 (1992)
[13] J. Yin, G. Y. Yuan, Z. H. Chu, J. Zhang, W. J. Ding, “Mg–Ni–(Gd,Nd) bulk metallic glasses with improved glass forming ability and mechanical properties” , Materials Research Society, Vol. 24, pp. 2130-2140 (2009)
[14] A. Inoue, B. L. Shen, H. Koshiba, H. Kato, A. R. Yavari, “Ultra-high strength above 5000 MPa and soft magnetic properties of Co–Fe–Ta–B bulk glassy alloys” , Acta Materialia, Vol. 52, pp. 1631-1637 (2004)
[15] K. M. Flores, R. H. Dauskardt, “Enhanced toughness due to stable crack tip damage zones in bulk metallic glass” , Scripta Materialia, Vol. 41, pp. 937-943 (1999)
[16] A. Inoue, Bulk Amorphous Alloys - Preparation and Fundamental Characteristics, Trans. Tech. Publications, Zurich, Swiss (1998)
[17] 惠希東,陳國良,塊體非晶質合金,化學工業出版社,北京,第40頁 (2007)。
[18] H. S. Chen and D. Turnbull, “Evidence of a Glass-Liquid Transition in a Gold Germanium” , The Journal of Chemical and Physics, Vol. 48, pp. 2560-2571 (1968)
[19] Z. P. Lu, Y. Li, S. C. Ng, “Reduced glass transition temperature and glass forming ability of bulk glass forming alloys” , Journal of Non-Crystalline Solids, Vol. 270, pp. 103-114 (2000)
[20] Z. P. Lu, C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses” , Acta Materialia, Vol. 50, pp. 3501-3512 (2002)
[21] 惠希東,陳國良,塊體非晶質合金,化學工業出版社,北京,第263頁 (2007)。
[22] B. Li, N. Nordstrom, E. J. Lavernia, “Spray forming of zircaloy” , Materials Science and Engineering, Vol. A237, pp. 207 (1997)
[23] C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden, J. M. Galbraith, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy” , Journal of Non-Crystalline Solids, Vol. 284, pp. 134-138 (2001)
[24] R. Liu, J. Li, K. Dong, C. Zheng, H. Liu, “Formation and evolution properties of clusters in a large liquid metal system during rapid cooling processes” , Materials Science and Engineering, Vol. B94, pp. 141-148 (2002)
[25] 田弘宇,「鐵基與鎳基非晶塊狀材料之開發」,碩士論文,國立清華大學,材料科學工程學系,新竹 (2005)。
[26] 吳學陞,「鎂銅釔合金非晶質化動力學,結晶化及性能之研究」,博士論文,國立清華大學,材料科學工程學系,新竹 (1996)。
[27] E. S. Park, H. G. Kang, W. T. Kim, “The effect of Ag addition on the glass-forming ability of Mg–Cu–Y metallic glass alloys” , Journal of Non-Crystalline Solids, Vol. 279, pp. 154-160 (2001)
[28] 楊政翰,「鎂基非晶/奈米結構複合合金,合成製作之研究」,碩士論文,義守大學,材料科學與工程學系,高雄 (2005)。
[29] 葉銘騏, 「以水冷銅模鑄造銅基塊狀非晶質合金與血液相容性評估」,碩士論文,國立高雄應用科技大學,機械與精密工程所(2005)。
[30] L. Q. Xing, P. Ochin, “Investigation of the effects of Al and Ti on the glass forming ability of Zr-Cu-Al and Zr-Ti-Al-Cu-Ni alloys through their solidification characteristics” , Acta Materialia, Vol. 45, pp. 3765-3774 (1997)
[31] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, “High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems” , Acta Materialia, Vol. 49, pp. 2645-2652 (2001)
[32] A. Inoue, W. Zhang, “Formation Thermal Stability and Mechanical Properties of Cu-Zr-Al Bulk Glassy Alloys” , Materials Transactions, Vol. 43, pp. 2921–2925 (2002)
[33] D. Xu, B Lohwongwatana, G. Duan, W. L. Johnson, C. Garland, “Bulk metallic glass formation in binary Cu-rich alloy series– Cu100−xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass” , Acta Materialia, Vol. 52, pp. 2621-2624 (2004)
[34] B. S. Murty, D. H. Ping, K. Honoa, A. Inoue, “APFIM and TEM study of the oxygen behavior during crystallization of Zr65Cu27.5Al7.5 metallic glass” , Materials Science and Engineering, Vol. A304–306, pp. 706-709 (2001)
[35] A. Takeuchi, Y. Yokoyama, H. Kato, K. Yubuta, A. Inoue, “Formation of Zr66.7Al11.1Ni22.2 noncrystalline alloys demonstrated by molecular dynamics simulations based on distorted plastic crystal model” , Intermetallics, Vol. 6, pp. 819-826 (2008)
[36] W. Chen, Y. Wang, J. Qiang, C. Dong, “Bulk metallic glasses in the Zr-Al-Ni-Cu system” , Acta Materialia, Vol. 51, pp. 1899-1907 (2003)
[37] W. Zhang, Q. Zhang, C. Qin, A. Inoue, “Synthesis and properties of Cu–Zr–Ag–Al glassy alloys with high glass-forming ability” , Materials Science and Engineering, Vol. B 148, pp. 92-96 (2008)
[38] G. Duan, K. D. Blauwe, M. L. Lind, J. P. Schramm, “Compositional dependence of thermal, elastic, and mechanical properties in Cu–Zr–Ag bulk metallic glasses” , Scripta Materialia, Vol. 58, pp. 159-162 (2008)
[39] A. Takeuchi and A. Inoue, “Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element” , Materials Transactions, Vol. 46, No. 12, pp. 2817-2829 (2005)
[40] C. Li, J. Saida, M. Kiminami, A. Inoue, “Dynamic crystallization process in a supercooled liquid region of Cu40Ti30Ni15Zr10Sn5 amorphous alloy” , Journal of Non-Crystalline Solids, Vol. 261, pp. 108-114 (2000)
[41] W. Zhang, Q. Zhang, A. Inoue, “Formation and thermal stability of new Zr–Cu-based bulk glassy alloys with unusual glass-forming ability” , Journal of Alloys and Compounds, Vol.483, pp. 112-115 (2009)
[42] G. Duan, K. D. Blauwe, M. L. Lind, J. P. Schrammand, W. L. Johnson, “Model for the interaction between interface migration and carbon diffusion during annealing of martensite–austenite microstructures in steels” , Scripta Materialia, Vol. 58, pp. 159–162 (2008)
[43] L. Q. Xing and P. Ochin, “Investigation of the effects of Al and Ti on the glass forming ability of Zr-Cu-Al and Zr-Ti-Al-Cu-Ni alloys through their solidification characteristics” , Acta Materialia, Vol. 45, pp. 3765-3774 (1997)
[44] T. G. Park, S. Yi, D. H. Kim, “Development of new Ni-based amorphous alloys containing no metalloid that have large undercooled liquid regions” , Scripta Materialia, Vol. 43, pp. 109-114 (2000)
[45] E. Matsubara, S. Sato, M. Imafuku, T. Nakamura, H. Koshiba, A. Inoue, Y. Waseda, “Structural study of Amorphous Fe70M10B20 (M=Zr, Nb and Cr) alloys by X-ray diffraction” , Materials Science and Engineering, Vol. A312, pp. 136-144 (2001)
[46] T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, “Ag-Al phase diagram”, Binary Alloy Phase Diagrams, second edition, ASM Internaitional, Materials Park, Ohio, Vol. 1, pp. 9 (1990).
[47] T. B. Massalski, H. Okamoto, P. R. Subramanian and L. kacprzak, “ Ag-Zr phase diagram”, Binary Alloy Phase Diagrams, second edition, ASM Internaitional, Materials Park, Ohio,Vol. 1, pp. 119 (1990)
[48] H. Okamoto, Journal of Phase Equilibria, Vol. 14, pp. 2 (1993)
[49] C. Y. Haein, R. D. Conner, “Amorphous alloys in the Cu–Hf–Ti system” , Journal of Alloys and Compounds, Vol. 459, pp. 160-162 (2008)
[50] G. Chen, H. Bei, Y, Cao, A, Gali C. T. Liu, E. P. George, “Enhanced plasticity in a Zr-based bulk metallic glass composite with in situ formed intermetallic phases” , Applied Physics Letters, Vol. 95, pp. 081908 (2009)

QR CODE