簡易檢索 / 詳目顯示

研究生: 封珮婕
FENG, PEI-JIE
論文名稱: 基於擴增實境導入工程測量課程對不同空間能力之學生學習成效、學習動機、認知負荷及對於學習模式的滿意度之影響
The Effects of Augmented Reality-based Engineering Measurement Course on Students with Different Spatial Abilities in Terms of their Learning Outcome, Motivation, Cognitive Load, and Satisfaction
指導教授: 翁楊絲茜
Cathy Weng
口試委員: 陳秀玲
shin-ling Chen
朱如君
Ru-jun Chu
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 96
中文關鍵詞: 工程測量擴增實境空間能力學習成效學習動機認知負荷學習滿意度
外文關鍵詞: Engineering Measurement, Augmented Reality, Spatial Ability, Learning Outcome, Learning Motivation, Cognitive Load, Learning Satisfaction
相關次數: 點閱:337下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討不同空間能力的高職土木與建築群學生透過不同學習工具(擴增實境系統、一般多媒體簡報)學習職業學校土木建築群測量實習課程綱要中的「角度測量」單元時,對學習成效、學習動機、認知負荷與學習模式的滿意度之影響。研究對象為臺灣北部、中部和南部各一所高級工業職業學校的土木建築群一年級及二年級學生為樣本,共228人參與本研究。每位學生接受相同的教學內容及教學活動。學習內容為職業學校土木建築群測量實習課程綱要中的「角度測量」單元,本研究採準實驗研究法,自變項包括空間能力、學習工具;依變項為學習動機問卷後測、學習成效測驗後測、認知負荷問卷及學習滿意度問卷,共變項為學習動機問卷前測、學習成效測驗前測。
    本研究對象分為兩組,分別以一般多媒體數位教材及擴增實境進行教學實驗,實驗前先進行空間能力測驗等前測,並依據大學考試中心提供的結果報告書將學生分為高、中、低空間能力組,接著進行四節課的教學實驗,最後透過工程測量測驗前後測、學習動機前後測、認知負荷問卷及對於學習滿意度問卷分析擴增實境在工程測量課程中對不同空間能力的高職土木與建築群學生之影響。
    研究結果發現,擴增實境有顯著提高各空間能力學生之學習成效;以學習動機而言,擴增實境也顯著提高各空間能力學生的自我效能與期望成功,低空間能力的擴增實境組學生之內在目標導向與工作價值優於僅以一般多媒體教材教學的學生;擴增實境也同時降低各空間能力學生的認知負荷,與提高學生的學習模式滿意度。


    This study explores the effects of the use of different learning tools (augmented reality system and general multimedia presentation) on learning outcome, learning motivation, cognitive load and learning satisfaction while vocational high school students from civil engineering and architecture group with different spatial ability learning the unit of angular measurement in the measurement practice curriculum guidelines of civil engineering and architecture group. The study was conducted on samples of first- and second-year vocational high school students from civil engineering and architecture group, and there are a total of 228 participants who come from one of these vocational schools located in the northern, central and southern Taiwan. Each student receives the same teaching content and teaching activities except the learning tools. This study adopts a quasi-experimental research design. The independent variables include spatial ability and learning tools while the dependent variables are the results from learning motivation questionnaire and the learning outcome posttest, cognitive load questionnaire and learning satisfaction questionnaire. The covariate variables of the study are the pretest result of learning motivation questionnaire and learning outcome.
    The research subjects are separated into two groups, and they were taught respectively by augmented reality system and general multimedia presentation. Before the experiment, the spatial ability test and other pretests are performed by each participating student, and the students’spatial ability are divided into high, medium, and low according to the reports provided by the Taiwan College Entrance Examination Center. Four-course teaching experiment then had been carried out before all the posttests were given. The objective of the study is to compare the effects of different learning tools on students with different spatial abilities in terms of their learning outcome, motivation, cognitive load, and satisfaction.
    The research results show that learning outcome of students with different spatial ability levels is significantly better when using augmented reality system. From the point of view of learning motivation, augmented reality also effectively improves self-efficacy for learning, performance for success and expectancy for success of students with different spatial ability levels. Intrinsic goal orientation and task value of students with low spatial ability in augmented reality group performed better than students in general multimedia presentation group. Moreover, augmented reality also decreases students’ cognitive load and increases students’ learning satisfaction.

    目錄 摘要 I ABSTRACT II 誌謝辭 IV 目錄 V 圖目錄 VII 表目錄 VIII 第壹章 緒論 1 第一節、研究背景與動機 1 第二節、研究目的 7 第三節、研究問題 8 第四節、名詞解釋 9 第五節、研究限制 12 第六節、研究貢獻 13 第貳章 文獻回顧 14 第一節、擴增實境的定義及設計 14 第二節、擴增實境對學習成效的影響 16 第三節、擴增實境對學習動機的影響 18 第四節、擴增實境對認知負荷的影響 20 第五節、擴增實境對空間能力之影響 22 第六節、對於擴增實境之數位內容設計原則 24 第參章 研究方法 25 第一節、研究架構 25 第二節、研究流程 27 第三節、實驗樣本及實驗流程 29 第四節、研究工具 31 第五節、資料處理與分析 38 第肆章 實驗結果分析 39 第一節、學習成效 39 第二節、學習動機 41 第三節、認知負荷 50 第四節、學習滿意度 52 第五節、訪談結果 54 第伍章 結論、討論與建議 57 第一節、結論與討論 57 第二節、建議 61 參考文獻 62 附錄一、學習成效測驗 76 附錄二、學習動機問卷 79 附錄三、認知負荷問卷 82 附錄四、學習滿意度問卷 83 附錄五、訪談題目 84 附錄六、學習單 85

    參考文獻
    一、 中文參考文獻
    王雅唐(2017)。空間能力對同不多影像擴增實境教學於認知負荷之影響。國立 臺灣師範大學圖文傳播學系碩士論文,台北市。
    王燕超(2006)。從擴增實境觀點論數位學習之創新。空間教學論叢,20,40-63。
    左台益、梁勇能(2001)。國二學生空間能力與van Hiele幾何思考層次相關性研 究。師大學報:科學教育類,46(1&2),1-20。
    吳銘達、鄭宇珊(2010)。教師教學行為、學生學習動機對學習成效之影響:階層 線性模式分析。中等教育,61(3),32-51。
    吳靜吉、程炳林(1992)。激勵的學習策略量表之修訂。中國測驗學會測驗學刊, 39,59-78。
    李昱廷(2013)。認知風格對學習者於擴增實境輔助頭燈系統配學習之影響。國 立台南大學數位學習科技學系碩士論文,台南市。
    沈忠偉、黃國禎(2004)。科技與學習:理論與實務(第四版)。台北市:心理。
    卓詠欽、王健華(2006)。擴增實境應用於台灣教育之初探研究─以國小自然與生 活科技教育為例。國立臺灣師範大學圖文傳播學系碩士論文,台北市。
    林小慧、熊召弟、林世華(2006)。具體影像空間教學策略與中學生空間能力之相 關研究。教育心理學報,4(37),393-409。
    林博文、孫德昌(2017)。測量實習搶分秘笈。台北市:弘揚。
    邱美虹、翁雪琴(1995)。國三學生「四季成因」之心智模式與推論歷程之探討。 科學教育學刊,1(3),23-68。
    施永富(1996)。測量學。台北市:東大。
    柯志祥、陳泳勳、花莉涵、張庭嘉(2012)。擴增實境於跨領域設計開發之應用 (I)(II)。行政院國家科學委員會補助專題研究計畫(編號: NSC99-2410-H-011-025-MY2),未出版。
    孫佩君(2017)。問題情境與回饋策略對高中生三角測量擴增實境數位遊戲學習 成效與動機之影響。國立臺灣師範大學資訊教育研究所碩士論文,台北市。
    區國良、曾郁庭、沈大鈞(2017)。應用擴增實境於Google Maps對地圖資訊學 習影響之研究。高雄師大學報,42,31-58。
    張春興(1994)。教育心理學:三化取向的理論與實踐。台北市:東華。
    張春興(2003)。教育心理學-三化取向的理論與實踐重修二版。台北市,東華。
    張訓譯(2018)。虛擬實境運用於教育場域可能面臨的問題。臺灣教育評論月刊, 7(11),120-125。
    張家舜(2012)。高職學生對擴增實境學習系統接受度之研究-以核子科學生活與 安全課程為例。國立臺灣師範大學圖文傳播學系碩士論文,台北市。
    許庭嘉、陳子潔、施詠恬、邱于軒、王韻茹、諸恩琳、張韶宸(2017)。結合擴增 實境與運算思維之雷切教具於排序演算法的學習成效分析。科技與人力教育 季刊,4(1),1-14。
    陳眉期(2011)。擴增實境輔助立體幾何概念學習系統之使用性暨學習效益評估。 國立臺南大學數位學習科技學系碩士論文,臺南市。
    陳舜文、魏嘉瑩(2013)。大學生學習動機之「雙因素模式」:學業認同與角色認 同之功能。中華心理學刊,55(1),41-55。
    程炳林(1991)。國中小學機立的學習策略之相關研究。國立政治大學教育研究所 碩士論文,台北市。
    葉重新(2001)。教育研究法。台北市:心理。
    蔡承哲(1996)。高雄地區高二學生空間能立像量之解題歷程分析研究。國立臺灣 師範大學數學教育研究所碩士論文,台北市。
    蔡承哲(2013)。擴增實境與鷹架教學策略對高中數學空間單元學習成效與動機 之影響。國立臺灣師範大學資訊教育研究所碩士論文,台北市。
    鄭海蓮、卓沛勳、蕭孟莛、陳世玉(試題編製者、量表編製者)(2010)。大學入 學考試中心學業性向測驗圖形題本。台北市:財團法人大學入學考試中心基 金會。
    賴協志(2013)。學習態度對學生學習與學校效能影響之研究。國家教育研究院(編 號:NAER-101-24-C-1-03-07-1-17),未出版。
    戴文雄(1998)。不同正增強回饋形式電腦輔助學習系統對不同認知形態與空間能 力高工機械製圖成效之研究。國科會補助研究(編號: NSC86-2516-S-018-010-TG),未出版。

    二、 英文參考文獻
    Afzal, H., Ali I., Khan, M.A., & Hamid, K. (2010). A study of university students’ motivation and its relationship with their academic performance. International Journal of Business and Management, 5(4), 80-88.
    Azuma, R. T., (1997). A survey of augmented reality. Teleoper Virtual Environ, 6, 355–385.
    Bacca, J., Baldiris, S., Fabregat, R., Graf, S., (2014). Augmented reality trends in education: A systematic review of research and applications. Journal of Educational Technology & Society, 17(4), 133-149.
    Baddeley, A., (1992). Working memory. Science, 255(5044), 556-559.
    Bazarov, S. E., Kholodilin, I. Y., Nesterov, A. S., & Sokhina, A. V. (2017). Applying augmented reality in practical classes f or engineering students. IOP Conference Series: Earth and Environmental Science, 87, 032004. doi:10.1088/1755- 1315/87/3/032004
    Bishop, J. E. (1987). Developing students' spatial ability. Science Teacher, 45(8), 20-23.
    Blagg, D. (2009). Augmented Reality Technology Brings Learning to Life. Retrieved from https://www.gse.harvard.edu/news/uk/09/09/augmented-reality-technology- brings-learning-life
    Blum, T., Heining, S. M., Kutter, O., & Navab, N. (2009). Advanced training methods using an augmented reality ultrasound simulator. Proceedings of the 2009 8th IEEE International Symposium on Mixed and Augmented Reality, 177-178.
    Chang, G., Morreale, P. & Medicherla, P. (2010). Applications of augmented reality systems in education. In Gibson, D. & Dodge, B. (Eds.), Proceedings of SITE 2010--Society for Information Technology & Teacher Education International Conference (pp. 1380-1385). San Diego, CA, USA : Association for the Advancement of Computing in Education (AACE).
    Chang, I. Y., & Chang, W. Y. (2012). The effect of student learning motivation on learning satisfaction. International Journal of Organizational Innovation, 4(3), 281.
    Chen, Y. C. (2006). A study of comparing the use of augmented reality and physical models in chemistry education, Proceedings of the 2006 ACM international conference on Virtual reality continuum and its applications, 369-372.
    Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for Future Research. Journal of Science Education and Technology, 22(4), 449-462.
    Cheville, A. (2014). Defining Engineering Education, Proceedings of the 2014 ASEE Annual Conference & Exposition, 24.357.1-24.357.24.
    Chi, H. L., Kang, S. C., & Wang, X. (2013). Research trends and opportunities of augmented reality applications in architecture, engineering, and construction. Automation in Construction, 33, 116-122.
    Chiang, T. H. C., Yang, S. J., & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students' learning achievements and motivations in natural science inquiry activities. Educational Technology & Society, 17(4), 352-365.
    Cubillo, J., Martin, S., Castro, M., & Boticki, I. (2015). Preparing augmented reality learning content should be easy: UNED ARLE—an authoring tool for augmented reality learning environments. Computer Applications in Engineering Education, 23(5), 778-789. doi:10.1002/cae.21650
    Delić, A., Domančić, M., Vujević, P., Drljević, N., & Botički, I. (2014). AuGeo: A geolocation-based augmented reality application for vocational geodesy education, Proceedings of ELMAR-2014, 1-4.
    Dunleavy, M., Dede, C., & Mitchell, R. (2009) Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18(1), 7-22.
    Dünser, A., Steinbügl, K., Kaufmann, H., & Glück, J. (2006) Virtual and augmented reality as spatial ability training tools, Proceedings of the 7th ACM SIGCHI New Zealand chapter's international conference on Computer-human interaction: design centered HCI, 125-132.
    Eursch, A. (2007). Increased safety for manual tasks in the field of nuclear science using the technology of augmented reality. 2007 IEEE Nuclear Science Symposium Conference Record, 2053-2059.
    Fan, P. C., Zhou, M. Q., & Wang X. S. (2011). The significance and effectiveness of Augmented Reality in experimental education, Proceedings of the 2011 International Conference on E-Business and E-Government, 1-4.
    Frank, J. A., Kapila, V. (2017). Mixed-reality learning environments: Integrating mobile interfaces with laboratory test-beds. Computers & Education, 110, 88-104.
    Freitas, R., & Campos, P. F. (2008). SMART: a SysteM of augmented reality for teaching 2nd grade students, Proceedings of the 22nd British HCI Group Annual Conference on HCI 2008: People and Computers XXII, 27-30.
    Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.
    Glasersfeld, E. V. (1989). Cognition, construction of knowledge, and teaching. Synthese, 80(1), 121-140.
    Gorgorio, N. (1998). Exploring the functionality of visual and non-visual strategies in solving rotation problems. Educational Studies in Mathematics, 35(3), 207-23l.
    Gu, N., Singh, V., & Wang, X. (2010). Applying augmented reality for data interaction and collaboration in BIM. In Dave, B., Li, A. I., Gu, N., & Park, H. J. (Eds.), New Frontiers: Proceedings of the 15th International Conference on Computer-Aided Architectural Design Research in Asia CAADRIA 2010 (pp. 511 520). Hong Kong: The Chinese University of Hong Kong.
    Guay, F., Ratelle, C. F., & Chanal, J. (2008). Optimal learning in optimal contexts: The role of self-determination in education. Canadian Psychology/Psychologie canadienne, 49(3), 233.
    Hamburger, V., & Hamilton, H. L. (1992). A series of normal stages in the development of the chick embryo. Developmental dynamics, 195(4), 231-272.
    Hammad A. (2009) Distributed augmented reality for visualising collaborative construction tasks. In X. Wang & M. A. Schnabel (Eds.) Mixed Reality In Architecture, Design And Construction (pp. 171-183). Dordrecht: Springer.
    Harrison, A. G.,Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026.
    Harvey, L., Locke, W., & Morey, A. (2002). Enhancing Employability, Recognizing Diversity. London: Universities UK.
    Horneckerab, E., Dünserc A. (2009). Of pages and paddles: Children’s expectations and mistaken interactions with physical–digital tools. Interacting with Computers, 21(1-2), 95-107.
    Huang, K. T., Ball, C., Francis, J., Ratan, R., Boumis, J., & Fordham, J. (2019). Augmented Versus Virtual Reality in Education: An Exploratory Study Examining Science Knowledge Retention When Using Augmented Reality/Virtual Reality Mobile Applications. Cyberpsychology, Behavior, and Social Networking, 22(2), 105-110.
    Jee, H. K., Lim, S., Youn, J. Y., & Lee, J. (2011). An immersive authoring tool for augmented reality-based e-learning applications, Proceedings of the 2011 International Conference on Information Science and Applications, 1-5.
    Juan, C., Beatrice, F., & Cano, J. (2008, July). An augmented reality system for learning the interior of the human body, Proceedings of 2008 Eighth IEEE International Conference on Advanced Learning Technologies, 186-188.
    Johnson, L., Smith, R., Willis, H., Levine, A., & Haywood, K., (2011). The 2011 horizon report. Austin, Texas: The New Media Consortium.
    Kaufmann, H. (2006, August). The potential of augmented reality in dynamic geometry education. Paper presented at 12th International Conference On Geometry and Graphics (2006 ISGG), Salvador, Brazil.
    Kaufmann H., & Dünser A. (2007). Summary of usability evaluations of an educational augmented reality application. In Shumaker, R. (Eds.), Lecture Notes in Computer Science: Vol. 4563. Virtual Reality. (pp. 660-669). Berlin, Heidelberg: Springer
    Kaufmann, H., & Schmalstieg, D. (2003). Mathematics and geometry education with collaborative augmented reality. Computers & Graphics, 27(3), 339-345.
    Kerawalla, L., Luckin, R., Seljeflot S., & Woolard A. (2006) “Making it real”: exploring the potential of augmented reality for teaching primary school science. Virtual Reality, 10(3-4), 163-174.
    Kikuo, A. H., & Tomotsugu, A. (2005, July). Augmented Instructions -A Fusion of Augmented Reality and Printed Learning Materials. Paper presented at Fifth IEEE International Conference on Advanced Learning Technologies (ICALT'05), Kaohsiung, Taiwan.
    Kim, S. Y., Lee, J. Y., Yeo, W. D., Park, Y. W., Song, I. S., & Hong, S. W. (2016). Development of post-evaluation model for future and emerging technology item reflecting environmental changes. Futures, 77, 67-79.
    Kuo, H. L., Kang, S. C., Lu, C. C., Hsieh, S. H., & Lin, Y. H. (2011). Using virtual instruments to teach surveying courses: Application and assessment. Computer Applications in Engineering Education, 19(3), 411-420.
    Lakaemper, R., & Malkawi, A. M. (2009). Integrating robot mapping and augmented building simulation. Journal of Computing in Civil Engineering, 23(6), 384-390
    Lean, G., & Clements, M. A. (1981). Spatial ability, visual imagery, and mathematical performance. Educational Studies in Mathematics, 12(3), 267-299.
    Liarokapis, F., Mourkoussis, N., White, M., Darcy, J., Sifniotis, M., Lister, P. F. (2004). Web3D and augmented reality to support engineering education. World Transactions on Engineering and Technology Education, 3(1), 11-14.
    Liou, H. H., Yang, S. J., Chen, S. Y., & Tarng, W. (2017). The influences of the 2D image-based augmented reality and virtual reality on student learning. Journal of Educational Technology & Society, 20(3), 110-121.
    Liu, W., Cheok, A. D., Charissa Lim, M. L. & Theng, Y. L. (2007). Mixed reality classroom-learning from entertainment, Proceedings of the 2nd international conference on Digital interactive media in entertainment and arts, 65-72.

    Lord, T. R. (1985). Enhancing the visuo-spatial aptitude of students. Journal of Research in Science Teaching, 22(5), 395-405.
    Macchiarella, N.D. & Vincenzi, D.A. (2004). Augmented reality in a learning paradigm for flight and aerospace maintenance training, Proceedings of The 23rd Digital Avionics Systems Conference, 5.D.1-5.1
    Macnab, W., & Johnstone, A. H. (1990). Spatial skills which contribute to competence in the biological sciences. Journal of Biological Education, 24(1), 37-41.
    Maqableh, W. F., & Sidhu, M. S. (2010). From boards to augmented reality learning, Proceedings of the 2010 International Conference on Information Retrieval & Knowledge Management, 184-187.
    Martín-Gutiérrez, J., Luís Saorín, J., Contero, M., Alcañiz, M., Pérez-López, D. C., & Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics, 34(1), 77- 91.
    Martín-Gutiérrez, J., Mora, C. E., Añorbe-Díaz, B., González-Marrero, A. (2017). Virtual technologies trends in education. Eurasia Journal of Mathematics, Science and Technology Education, 13(2), 469-486.
    Martín-Gutiérrez, J., & Meneses-Fernández, M. (2014). Applying augmented reality in engineering education to improve academic performance & student motivation. International Journal of Engineering Education, 30(3), 625-635.
    Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43–52.
    Monahan, T., McArdle, G., & Bertolotto, M. (2008). Virtual reality for collaborative e-learning. Computers & Education, 50(4), 1339-1353.
    Novotný, M., Lacko, J., & Samuelčík, M. (2013). Applications of multi-touch augmented reality system in education and presentation of virtual heritage. Procedia Computer Science, 25, 231-235.
    Nunez, M. D., Quirós, R., Lenguajes, D. de, Castellón, Spain, A., & Núñez, I. G. (2008). Collaborative augmented reality for inorganic chemistry education, Proceedings of the 5th WSEAS/IASME international conference on Engineering education, 271-277.
    Onime, C. E. O., Uhomoibhi, J., & Pietrosemoli, E. (2014). A demonstration of an augmented virtuality based solar energy power calculator in electrical engineering, Proceedings of the 2014 11th International Conference on Remote Engineering and Virtual Instrumentation, 198-199.
    Opriş, I., Costinaş, S., Ionescu, S. C., & Nistoran D. E. G. (2018). Step-by-step augmented reality in power engineering education. Computer Applications in Engineering Education, 26(5), 1590–1602.
    Paas, F. G. W. C., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instructional science, 32(1), 1-8.
    Paas, F. G. W. C., van Merriënboer, J. J. G., & Adam, J. J. (1994). Measurement of Cognitive Load in Instructional Research. Perceptual and Motor Skills, 79(1), 419–430.
    Pallrand, G. J. & Seeber, F. (1984). Spatial ability and achievement in introctuctory physics. Journal of Research in Science Teaching, 22(5), 507-516.
    Pathomaree, N., & Charoenseang, S. (2005). Augmented reality for skill transfer in assembly task, Proceedings of the 14th IEEE Workshop on Robot and Human Interactive Communication, 500-504.
    Potter, C. & Merwe, E. V. D. (2003). Perception, imagery, visualization and engineering graphics. European Journal of Engineering Education, 28(1), 117-133.
    Quarles, J., Lampotang, S., Fischler, I., Fishwick, P., & Lok, B. (2009). Scaffolded learning with mixed reality. Computers & Graphics, 33(1), 34-46.
    Radu, I. (2012). Why should my students use AR? A comparative review of the educational impacts of augmented-reality, Proceedings of the 2012 IEEE International Symposium on Mixed and Augmented Reality, 313-314.
    Radu, I. (2014). Augmented reality in education: a meta-review and cross-media analysis. Personal and Ubiquitous Computing, 18(6), 1533-1543.
    Roca-González, C., Martin-Gutierrez, J., García-Dominguez, M., Carrodeguas, M. del C. M. (2016). Virtual technologies to develop visual-spatial ability in engineering students. Eurasia Journal of Mathematics, Science and Technology Education, 13(2), 441-468.
    Santos, M. E. C., Chen, A., Taketomi, T., Yamamoto, G., Miyazaki, J., & Kato, H. ( 2013). Augmented reality learning experiences: Survey of prototype design and evaluation. IEEE Transactions on learning technologies, 7(1), 38-56.
    Seo J., Kim N., Kim G.J. (2006) Designing interactions for augmented reality based educational contents. In Pan Z., Aylett R., Diener H., Jin X., Göbel S., Li L. (Eds.) Lecture Notes in Computer Science: Vol 3942. Technologies for E-Learning and Digital Entertainment (pp. 1188-1197). Berlin, Heidelberg: Springer.
    Shelton, B. E., & Hedley, N. R. (2002, September). Using augmented reality for teaching earth-sun relationships to undergraduate geography students. Paper presented at The First IEEE International Workshop Augmented Reality Toolkit, Darmstadt, Germany, Germany.
    Shiu, R. S., Kang, S. C., Han, J. Y., & Hsieh, S. H. (2011). Modeling systematic errors for the angle measurement in a virtual surveying instrument. Journal of Surveying Engineering, 137(3), 81-90.
    Siemonkowski, F., & Macknight, F. (1971). Spatial cognition: Success prognosticator in college science courses. Journal of College Science Teaching, 1(1), 56-59.
    Sin, A. K., & Zaman, H. B. (2010). Live Solar System (LSS): Evaluation of an Augmented Reality book-based educational tool, Proceedings of the 2010 International Symposium on Information Technology, 1-6.
    Smith, I. M. (1964). Spatial ability. San Diego: Knapp.
    Sprague, D. & Dede, C. (1999). Constructivism in the Classroom: If I Teach This Way, Am I Doing My Job?. Learning & Leading with Technology, 27(1), 6-9.
    Sumadio, D. D., & Rambli, D. R. A. (2010). Preliminary evaluation on user acceptance of the augmented reality use for education, Proceedings of the 2010 Second International Conference on Computer Engineering and Applications, 461-465.
    Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.) The Cambridge handbook of multimedia learning (pp. 19-29). New York, NY: Cambridge University Press.
    Tang, A., Owen, C., Biocca, F., & Mou, W. (2003). Comparative effectiveness of augmented reality in object assembly, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 73-80.
    Theng, Y. L., Charissa L. M. L., Liu W., & Cheok A. D. (2007). Mixed reality systems for learning: a pilot study understanding user perceptions and acceptance. In Shumaker R. (Eds.) Lecture Notes in Computer Science, Vol. 4563. Virtual Reality (pp. 728-737). Berlin, Heidelberg: Springer.
    Van Merriënboer, J. J., & Sweller, J. (2010). Cognitive load theory in health professional education: design principles and strategies. Medical education, 44(1), 85-93.
    Uluyol, Ç., & Eryilmaz, S. (2015). Examining pre-service teachers’ opinions regarding to augmented reality learning, Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 34(3), 403-413.
    Weng, C., Feng, P. J., Weng, A., & Chen, Z. H. (2018, April). The development and evaluation of incorporating augmented reality content in an engineering drawing course. Paper presented at the International Conference on e-Commerce, e-Administration, e-Society, e-Education, and e-Technology (e-CASE & e-Tech 2018), Osaka, Japan.
    Woods, E., Billinghurst, M., Looser, J., Aldridge, G., Brown, D., Garrie, B., & Nelles, C. (2004). Augmenting the science centre and museum experience, Proceedings of the 2nd international conference on Computer graphics and interactive techniques in Australasia and South East Asia, 230-236.
    Zagoranski, S., & Divjak, S. (2003). Use of augmented reality in education, Proceedings of The IEEE Region 8 EUWOCON 2003, 339-342.
    Zhang, J., Sung, Y. T., Hou, H. T., & Chang, K. E. (2014). The development and evaluation of an augmented reality-based armillary sphere for astronomical observation instruction. Computers & education, 73, 178-188.
    Zhou, F., Duh, H. B. L., & Billinghurst, M. (2008). Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR, Proceedings of the 7th IEEE/ACM international symposium on mixed and augmented reality , 193-202.

    無法下載圖示 全文公開日期 2024/08/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE