簡易檢索 / 詳目顯示

研究生: 林永泰
Yung-Tai Lin
論文名稱: 微分運動學與影像回授於六軸機械臂之應用
The Applications of Differential Kinematics and Image Feedback in 6-Dof Manipulators
指導教授: 施慶隆
Ching-Long Shih
口試委員: 李文猶
Wen-Yo Lee
吳修明
Hsiu-Ming Wu
王乃堅
Nai-Jian Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 80
中文關鍵詞: 六軸機械臂微分運動學數值法逆運動學影像回授透視投影轉換YOLO v5
外文關鍵詞: Manipulator, Differential Kinematics, Numerical Inverse Kinematics, Image Feedback, Perspective Transformation, YOLO v5
相關次數: 點閱:309下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在運用微分運動學實現數值法逆向運動學,並結合影像回授控制具特殊結構、機械臂幾何參數量測不易之六軸機械臂,能移動到與理想目標位置及姿態,差距在一定誤差內的工作點。為了驗證數值法逆運動學的可行性及讓誤差集中於機械臂幾何參數的測量,首先將二維碼張貼在目標物上進行位置及姿態檢測,接著藉由透視投影轉換求得之相機與機械臂基座標系間的齊次轉換矩陣將目標位置及姿態轉換至機械臂座標系下,最終藉由數值法逆運動學計算出機械臂各關節所需之移動量,並確保在沒有超出關節角度限制下驅動機械臂。此外,為了提升本論文使用之六軸機械臂的實用性,在確認數值法運動學可實際運用於機械臂後,本論文利用YOLO v5對目標物進行角點偵測,並透過後處理求出目標位置及姿態來取代須將二維碼張貼於物體上之限制。最終我們設定數值法逆運動學演算法的位置及姿態誤差分別在收斂至0.5(cm)及0.01(rad)內時停止數值疊代,並應用至實際六軸機械臂中查看其成效。


    This thesis aims to use differential kinematics to implement numerical inverse kinematics and control the manipulator with a specific structure or its DH parameters can’t be easily measured by image feedback. The manipulator is moved to a point within a certain error from the ideal target position and pose. To verify the feasibility of numerical inverse kinematics and to focus the error on the measurement of DH parameters, the ArUco is first posted on the object for position and pose detection. Second, the target position and pose from the camera coordinate is converted to the manipulator coordinate by the homogeneous transformation matrix between them. Last, the amount of movement of each joint is calculated by using numerical inverse kinematics without exceeding the limitation of each joint angle when driving the robot arm. In addition, to enhance the practicality of the manipulator, YOLO v5 is used to perform corner detection of the object and calculate its position and pose by post-processing to replace the ArUco which was posted on the object. Consequently, the numerical inverse kinematic algorithm stops iterating when the position and pose errors converged within 0.5(cm) and 0.01(rad) respectively, then is applied to the actual 6-axis manipulator to observe its effectiveness.

    目錄 摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 IX 第1章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 1 1.3論文大綱 3 第2章 系統架構與控制流程 4 2.1 系統架構 4 2.2 硬體設備介紹 5 2.3 系統流程介紹 8 第3章 機械臂運動學 9 3.1順向運動學 9 3.1.1四連桿機構 10 3.1.2齊次轉換矩陣 12 3.1.3 DH Table 13 3.2逆向運動學 17 第4章 機械臂微分運動學 19 4.1六軸機械臂幾何JACOBIAN矩陣 19 4.1.1幾何Jacobian矩陣 19 4.1.2 六軸機械臂幾何Jacobian矩陣推導 20 4.2機械臂奇異點(SINGULARITIES)分析 23 4.2.1 手腕奇異點 24 4.3 機械臂逆向微分運動學 24 4.4分析式JACOBIAN矩陣與幾何JACOBIAN矩陣 26 4.5 逆向運動學演算法 27 4.5.1方向誤差(orientation error) 28 4.5.2 二階段逆向運動學演算法 31 第5章 物體定位及姿態 33 5.1 透視投影轉換 34 5.2 基於二維碼之物體定位及姿態 36 5.2.1 物體定位 37 5.2.2 物體姿態 39 5.3 基於神經網路之物體定位及姿態 41 5.3.1 物體定位 41 5.3.2 物體姿態 42 第6章 實驗結果與討論 44 6.1 六軸機械臂正向運動學 44 6.2 相機姿態及目標物定位與姿態 47 6.2.1 求解相機姿態 47 6.2.2基於二維碼之目標物定位及姿態評估 49 6.2.2.1目標物定位評估 49 6.2.2.2目標物姿態評估 50 6.2.3 基於YOLO v5之目標物定位及姿態評估 52 6.2.3.1 目標物定位評估 52 6.2.3.2 目標物姿態評估 53 6.3 JACOBIAN 矩陣對數值法逆運動學之影響 54 6.4 數值法逆向運動學實現 56 6.4.1 逆向運動學演算法 56 6.4.2 方向誤差計算法比較 57 6.4.3 逆向運動學演算法之應用 58 第7章 結論與建議 64 7.1 結論 64 7.2 建議 65 參考資料 67

    [1] J. Denavit, R. S. Hartenberg, "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices, "1955.
    [2] A. Aristidou, J. Lasenby, Y. Chrysanthou, and A. Shamir," Inverse Kinematics Techniques in Computer Graphics: A Survey," COMPUTER GRAPHICS forum, vol.37, issue 6, pp.35-58, 2018.
    [3] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo," Robotics: Modelling, Planning, and Control," 2008.
    [4] L. Sciavicco, B. Siciliano, “Coordinate transformation: A Solution Algorithm for One Class of Robots,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 16, pp. 550-559, 1986.
    [5] R.Campa, K.Camarillo, and L.Arias," Kinematic Modeling and Control of Robot Manipulators via Unit Quaternions: Application to a Spherical Wrist," in Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA, USA, December 13-15, 2006, pp. 6474-6479.
    [6] Tiantian Yu1, Daqing Wang and Lifu Gao," Singularity Avoidance for Manipulators with Spherical Wrists Using the Approximate Damped Reciprocal Algorithm," in International Journal of Advanced Robotic Systems, MarchApril 2021, pp.1-9.
    [7] R.Campa and H. de la Torre," Pose Control of Robot Manipulators Using Different Orientation Representations: A Comparative Review," in 2009 America-n Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA, June 10-12, 2009, pp.2855-2860.
    [8] C. Natale, Interaction Control of Robot Manipulators: Six Degrees–of–freedom Tasks, Springer, Germany, 2003.
    [9] Zhengyou Zhang," Flexible Camera Calibration By Viewing a Plane From Unknown Orientations," in Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 1, pp.666-673.
    [10] R.Y. Tsai and R.K. Lenz, “A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration”, IEEE Trans. Robotics and
    Automarion, vol. 5, pp. 345-358, 1989.
    [11] M. Kaur, S. Sondhi, and V. K. Yanumula," Kinematics Analysis and Jacobian Calculation for Six Degrees of Freedom Robotic Arm," in 2020 IEEE 17th India Council International Conference (INDICON), December 2020.
    [12] A.Ehrlich," The Inverse Jacobian Control Method Applied to a Four Degree of
    Freedom Confined Space Robot," University of Washington, 2016.
    [13] Stefan Schaal. Jacobian Methods for Inverse Kinematics and Planning Slides from Stefan Schaal The Inverse Kinematics Problem, 2006.
    [14] Sung-Kyun Kim, Ji-Hun Bae, Yonghwan Oh, and Doik Kim," 7-DOF Redundant Manipulator Control Using Quaternion Feedback based on Virtual Spring-Damper Hypothesis," in The 5th International Conference on the Advanced Mechatronics(ICAM2010), 2010, pp.87-92.
    [15] S. R. Buss, J.S. Kim," Selectively Damped Least Squares for Inverse Kinematics," Journal of Graphics Tools, vol.10, 2005, pp.37-49.
    [16] S. Caldera, A.Rassau and Douglas Chai," Review of Deep Learning Methods in Robotic Grasp Detection," Multimodal Technologies and Interaction, September 2018.
    [17] 施慶隆、李文猶, 機電整合與控制-多軸運動設計與應用,第三版,全華書局股份有限公司,2015.

    QR CODE