簡易檢索 / 詳目顯示

研究生: 龔鈺傑
Kung, Yu-Chieh
論文名稱: 多機器人系統之演化式編隊控制及其系統晶片設計實現
Evolutionary Formation Control of Multi-Robot Systems and Its SoPC Implementation
指導教授: 徐勝均
Sendren Sheng-Dong Xu
口試委員: 黃旭志
Hsu-Chih Huang
柯正浩
Kevin Cheng-Hao Ko
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 74
中文關鍵詞: 編隊控制演化式演算法多機器人系統人工位能場
外文關鍵詞: formation control, evolutionary algorithm, multi-robot systems, artificial potential field
相關次數: 點閱:760下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出多機器人系統(Multi-Robot System, MRS)的演化式編隊控制(Evolutionary Formation Control),並實現系統晶片(System on Programmable Chip, SoPC)設計。多機器人系統以三臺四輪全方位移動機器人為基礎,並通過無線傳輸溝通平臺建立出本論文研究的多機器人系統。演化式人工類免疫系統(Artificial Immune System, AIS)演算法、模糊理論和人工位能場將用於運動控制、編隊控制和物體避障。其中,AIS 演算法將對每臺機器人模糊PID 控制器最佳化,此外,再與基因演算法(Genetic Algorithms, GA) 和粒子群演算法(Particle Swarm Optimization, PSO)去做相應的最佳化表現比較。編隊控制用於多機器人系統維持隊形形狀,並與演化式模糊PID 控制器的結合得以解決多機器人系統問題。每臺機器人系統的開發採用Altera 公司所開發的DE1-SoC 嵌入式系統開發板,藉由SoPC的技術將模擬分析的系統予以實現,進而總結出本系統在模擬與實驗結果上表現出其效力和其優點。


    This thesis presents an evolutionary formation control method of multi-robot systems and its system on programmable chip (SoPC) implementation. The proposed multi-robot system is constructed by three four-wheeled omnidirectional mobile robots and a wireless communication environment. The evolutionary artificial immune system (AIS) algorithm, fuzzy theory and artificial potential field (APF) are employed to achieve motion control, formation control and obstacle avoidance. AIS computing is combined with fuzzy theory to develop an optimal fuzzy PID controller of each robot. Moreover, the proposed AIS-based fuzzy approach is compared with conventional evolutionary fuzzy systems using genetic algorithms (GA) and particle swarm optimization (PSO). The proposed AIS-fuzzy controller is extended to address the
    formation control problem of multi -robot systems. All the components of each robot are implemented in the Altera DE1-SoC development kit by means of SoPC technology. Simulation results and experimental results demonstrates the effectiveness and merit of the proposed methods.

    摘要..........I Abstract..........IV 致謝..........V 目錄..........VI 圖目錄..........VIII 表目錄..........XI 第一章 緒論..........1 1.1研究背景與動機..........1 1.2研究目的..........1 1.3文獻探討..........2 1.4論文架構..........4 第二章 演化式控制器設計..........6 2.1系統架構..........6 2.2演化式算法..........8 2.2.1基因演算法(GA)..........8 2.2.2人工類免疫演算法(AIS)..........10 2.2.3粒子群演算法(PSO)..........12 2.3四輪全方位移動機器人運動學模型..........14 2.3.1四輪全方位移動機器人簡介..........14 2.3.2運動學模型..........18 2.4模糊理論植基於PID控制器..........20 2.4.1PID控制器..........21 2.4.2模糊PID控制器..........24 2.5模糊規則表最佳化..........28 2.5.1演化式模糊..........28 2.5.2最佳化結果..........31 第三章 編隊控制設計..........36 第四章 人工位能場避障設計..........42 4.1人工位能場演算法..........42 4.2四輪全方位機器人的套用..........43 第五章 硬體設計..........45 5.1DE1-SoC開發板介紹..........45 5.2FPGA設計..........45 第六章 模擬分析與實驗結果..........49 6.1單一機器人演化式運動控制測試..........49 6.2圓形軌跡追蹤模擬與實驗..........52 6.2.1PID控制器模擬分析..........53 6.2.2模糊PID編隊控制模擬分析..........54 6.2.3演化式編隊控制模擬..........57 6.2.4演化式編隊控制實驗結果..........60 6.3人工位能場避障模擬與實驗..........62 6.3.1人工位能場避障模擬..........63 6.3.2演化式編隊控制之位能場避障..........64 6.4分析與結果討論..........66 第七章 結論與未來展望..........68 7.1結論..........68 7.2未來展望..........69 參考文獻..........70

    [1]F. Ciccozzi, D. D. Ruscio, I. Malavolta, and P. Pelliccione, “Adopting MDE for Specifying and Executing Civilian Missions of Mobile Multi-Robot Systems,” IEEE Access, vol. 4, pp. 6451–6466, Sep. 2016.
    [2]J. R. Rivera-Guillen, J. d. J. Rangel–Magdaleno, R. d. J. Romero–Troncoso, R. A. Osornio–Rios, and R. G. Guevara–Gonzalez, “An Open-Access Educational Tool for Teaching Motion Dynamics in Multi-Axis Servomotor Control,” IEEE Transactions on Education, vol. 55, no. 2, pp. 218–225, May. 2012.
    [3]K. Watanabe, Y. Shiraishi, S. Tzafestas, J. Tang, and T. Fukuda, “Feedback Control of an Omnidirectional Autonomous Platform for Mobile Service Robots,” Journal of Intelligent and Robotic Systems, vol. 22, pp. 315–330, 1998.
    [4]H.–C. Huang, “SoPC-Based Parallel ACO Algorithm and its Application to Optimal Motion Controller Design for Intelligent Omnidirectional Mobile Robots,” IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 1828–1835, Nov. 2013.
    [5]D. Chwa, “Robust Distance-Based Tracking Control of Wheeled Mobile Robots Using Vision Sensors in the Presence of Kinematic Disturbances,” IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6172–6183, Oct. 2016.
    [6]M. D. Rocco, F. L. Gala, and G. Ulivi, ”Testing Multirobot Algorithms: SAETTA: A Small and Cheap Mobile Unit,” IEEE Robotics & Automation Magazine, vol. 20, no. 2, pp. 52–62, June 2013.
    [7]D. Bacciu, C. Gallicchio, A. Micheli, M. D. Rocco, A. Saffiotti, M. D. Rocco, and A. Saffiotti, “Learning Context-Aware Mobile Robot Navigation in Home Environments,” Conference on Information Intelligence Systems and Applications (IISA), Chania, Crete, Greece, July 7–9, 2014, pp. 57–62.
    [8]Z. Yuanguo, “Fuzzy Optimal Control for Multistage Fuzzy Systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 41, no. 4, pp. 964–975, 2011.
    [9]J.–J. Yu, K.–J. Zhang, and S.–M. Fei, “Adaptive Fuzzy Tracking Control of a Class of Stochastic Nonlinear Systems With Unknown Dead-Zone Input,” International Journal of Fuzzy Systems, vol. 10, no. 1, pp. 18–23, 2008.
    [10]Y.–C. Hsueh, S.–F. Su, and M.–C. Chen, “Decomposed Fuzzy Systems and Their Application in Direct Adaptive Fuzzy Control,” IEEE Transactions on Cybernetics, vol. 44, no. 10, pp. 1772–1783, Jan. 2014.
    [11]L. N. de Castro and J. I. Timmis, ”Artificial Immune Systems as a Novel Soft Computing Paradigm,” Soft Computing, vol. 7, pp. 526–544, 2003.
    [12]S.–W. Lin and S.–C. Chen, “Parameter Tuning, Feature Selection and Weight Assignment of Features for Case–Based Reasoning by Artificial Immune System,” Applied Soft Computing, vol. 11, pp. 5042–5052, 2011.
    [13]S. Qian, Y. Ye, B. Jiang, and J. Wang, “Constrained Multiobjective Optimization Algorithm Based on Immune System Model,” IEEE Transactions on Cybernetics, vol. 46, no. 9, pp. 2056–2069, 2016.
    [14]K. Komeza, E. N. Juszczak, P. Di, Barba, P. Napieralski, J. P. Lecointe, and N. Hihat, “Using the FEM Meshes Adaption and Genetic Algorithms for Identification of Permeability in Normal Direction of Anisotropic Sheets,” IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 211–214, 2012.
    [15]Y. Okamoto, Y. Tominaga, and S. Sato, “Topological Design for 3D Optimization Using the Combination of Multistep Genetic Algorithm with Design Space Reduction and Nonconforming Mesh Connection,” IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 515–518, 2012.
    [16]H. Liang, S. An, J. Wang, Y. Zhou, H. Fan, P. Krebs, and J. Zhou, “Optimizing Time Multiplexing Auto-Stereoscopic Displays with a Genetic Algorithm,” Journal of Display Technology, vol. 10, no. 8, pp. 695–699, 2014.
    [17]W.–J. Wang, T.–G. Yen, and C.–H. Sun, “A Method of Self–Generating Fuzzy Rule Base Via Genetic Algorithm,” 5th Asian Control Conference, United States, July 20–23, 2004, pp. 1608–1615.
    [18]P. V. Krishna, V. Saritha, G. Vedha, A. Bhiwal, and Chawla, “Quality of Service Enabled Ant Colony-Based Multipath Routing for Mobile Ad Hoc Networks,” IEEE Transactions on Communications, vol. 6, no. 1, pp. 76–83, 2012.
    [19]W. Lu, W. Zhiliang, H. Siquan, and L. Lei, “Ant Colony Optimization for Tank Allocation in Multi–Agent System,” IEEE Transactions on Communications, vol. 10, no. 3, pp. 125–132, 2013.
    [20]Z. Guanglei and J. Heming, “3D Path Planning of AUV Based on Improved Ant Colony Optimization,” Proceedings of the 32nd Chinese Control Conference, Xi’an, China, July 26–28, 2013, pp. 5017–5022.
    [21]Y. Fu, M. Ding, and C. Zhou, “Phase Angle Encoded and Quantum Behaved Particle Swarm Optimization Applied to Three-Dimensional Route Planning for UAV,” IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, vol. 42, no. 2, pp. 511–526, 2012.
    [22]S. Grubisic, W. P. Carpes, J. P. A. Bastos, and G. Santos, “Association of a PSO Optimizer with a Quasi-3d Ray-Tracing Propagation Model for Mono and Multi-Criterion Antenna Positioning in Indoor Environments,” IEEE Transactions on Magnetics, vol. 49, no. 5, pp. 1645–1648, 2013.
    [23]W. Xu, B.–Y. Duan, P. Li, N. Hu, and Y. Qiu, “Multiobjective Particle Swarm Optimization of Boresight Error and Transmission Loss for Airborne Radomes,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 11, pp. 5880–5885, 2014.
    [24]Y. Rasekhipour, A. Khajepour, S.–K. Chen, and B. Litkouhi, ”A Potential Field-Based Model Predictive Path-Planning Controller for Autonomous Road Vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 5, pp. 1255–1267, May. 2017.
    [25]TP–Link Technologies Co. Ltd., http://www.tp-link.tw/
    [26]J. H. Holland, “Genetic Algorithms and the Optimal Allocation of Trials,” Society for Industrial and Applied Mathematics (SIAM) Journal on Computing, vol. 2, no. 2, pp. 88–105, 1973.
    [27]J. Sprent, “T and B Memory Cells,” Cell, vol. 76, no. 2, pp. 315–322, 1994.
    [28]N. K. Jerne, “The Immune System,” Scientific American, vol. 229, pp. 52–60, 1973.
    [29]L. N. De Castro and J. Timmis, Artificial Immune Systems: A New Computational Intelligence Approach, London, U.K.: Springer–Verlag, 1996.
    [30]J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” IEEE International Conference on Neural Networks, Perth, WA, Australia, pp. 1942–1948, 27 Nov. 27– Dec. 1, 1995.
    [31]F. Golnaraghi, B. C. Kuo, Automatic Control System 9/E, John Wiley & Sons, Inc., 2010.
    [32]O. Khatib, “Real–Time Obstacle Avoidance for Manipulators and Mobile Robots,” IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March, 1985, pp. 500–505.
    [33]Wickramasooriya, G. Hamilan, L. S. I. L. Jayawardena, W. M. D. L. W. Wijemanne, and S. R. Munasinghe, “Characteristics of Sonar Range Sensor SRF05,” International Conference on Information and Automation for Sustainability (ICIAFS), Colombo, Sri Lanka,12–24 Dec. 2008, pp. 475–480.
    [34]Srf05 technical documentation – robot electronics. [Online]. Available: http://www.robot electronics.co.uk/htm/srf05tech.htm
    [35]友晶科技,http://www.terasic.com.tw/

    無法下載圖示 全文公開日期 2022/07/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE