簡易檢索 / 詳目顯示

研究生: Tariku Tamiru Belis
Tariku Tamiru Belis
論文名稱: 產品和流程設計中人機工程學可持續性績效評估框架
A Framework for Performance Evaluation of Ergonomic Sustainability in Product and Process Design
指導教授: 林久翔
Chiuhsiang Joe Lin
口試委員: 林久翔
Chiuhsiang Joe Lin
江行全
Bernard C. Jiang
郭財吉
Tsai Chi Kuo
Yung-Hui Lee
Yung-Hui Lee
孫天龍
Tien-Lung Sun
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 116
中文關鍵詞: 永續性指標模糊德爾菲法社會性面項人因工程受雇者活動產品生命週期
外文關鍵詞: Sustainability, Indicators, Fuzzy Delphi method, Social dimension, Ergonomics, Employee-activity, Product life cycle stages
相關次數: 點閱:330下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 永續製造意即透過減少對環境的負向影響、節約能源及自然資源、對於工人和當地社區與消費者提供安全性、及經濟上可行之產出產品的過程。近年來,有鑑於製造業活動對於環境、社會 (如: 受雇者或工人、消費者、及當地社區)及經濟上的直接及間接性影響,永續製造的議題引起了政府與製造業者的高度關注。因為其被公認的重要性及多元化概念,永續性在人因工程、管理學、工業工程及其他工程學門已成為一熱門研究領域。儘管如此,對於環境、社會、經濟上的著重點是相異的。許多相關於永續製造的組織報告和學術研究已發表了用於評估永續性製造績效的指標。考量在環境、社會、經濟觀點上各指標的不同重要性程度將有助於達成真正的永續製造。然而,多數已被發展的先前研究中,對於永續性評核模式是奠基於經濟上及環境上的考量而對於社會性的則較少著墨。
    為補足此一缺失,本論文中我們將提出一方式,確認人因角度上的製造永續性之指標,並且以模糊德爾菲法驗證被確認的指標之重要性。從製造業而言,以人因觀點評估永續性表現,說明人類特質、行為、表現、人類與產品之互動、與工作場域之互動、與工作環境之互動、以及與產品的各生命週期之互動,提供了更全面性的社會面項。為了確認永續性指標,本研究發展了兩項概念性架構,其一奠基於產品本身,涵蓋搖籃到墳墓 (cradle-to-grave)之永續性評估。另一則奠基於過程,涵蓋大門到大門方式 (gate-to-gate)。本研究蒐集了65位專家於德爾菲問卷所得之結果,此問卷採九分制評比方式,以驗證兩個架構中各指標的重要性程度。以演算法方式分析專家們的看法,同時考量專家間相似及不同處,以及分配給各專家的重要性程度。結果指出本研究中所有確認的指標對於製造業的表現均是重要的。以過程為基礎的架構其解模糊數值大於0.5254,而以產品為基礎的架構其解模糊數值大於0.6273。然而,每個指標的重要性程度則分岐。本研究成果更進一步涵蓋了社會性方面的面項,並說明了人因考量於永續發展的角色。再者,業界管理者以及實務工作者將可參酌本研究提出的指標優先程度資訊,用以計畫資源分配,以達到永續產品與製程永續發展的目標。


    Sustainable manufacturing is producing products through processes that reduces negative environmental effects, conserve energy and natural resources, are safe for workers, local communities and consumers and are economically viable. In recent years, the issue of sustainable manufacturing has received considerable attention by governments and manufacturing industries due to growing awareness of the direct and indirect effects of manufacturing activities on the environment, society (i.e., employee or workers, consumers, local community) and economy. Because of its recognized importance and diversified concept, sustainability become a hot research area of several disciplines including ergonomics, management, industrial engineering and other engineering fields. Even though, the emphasis given to environmental, social and economic were different, numerous organizational report and academic papers related to sustainable manufacturing have presented indicators that are used to evaluate the performance of manufacturing towards sustainability. A strong and truly sustainable manufacturing achieved by taking into account proportional indicators or factors under environmental, social and economic aspects. However, most previous studies on sustainability evaluation model were developed based on economic and environmental aspects with giving less attention to the social aspects.
    To bridge this gap, in this dissertation, we proposed an approach to identify the indicators of manufacturing sustainability in ergonomics perspective and to validate the importance of the identified indicators using a fuzzy Delphi method. From manufacturing viewpoint, evaluating sustainability performance from an ergonomics perspective provides more comprehensive social dimension aspects by addressing human characteristics, behavior, performance, human interaction with a product, workplace, process working environment, and the product across its life cycle. For identification of sustainability indicators, this study developed two conceptual frameworks, one based on products (i.e., covering the cradle-to-grave sustainability assessment boundaries) whereas the other based on process (i.e., covering gate-to-gate). A total of 65 experts was involved in the Delphi questionnaire designed with a nine-point rating scale to validate the importance level of each indicator in both frameworks. The expert opinion was combined using algorithm that considers similarities, differences among the experts and degree of importance assigned to the experts. The result indicates all identified indicators are important to evaluate the manufacturing performance towards sustainability because of their defuzzified values are greater than 0.5254 for process based framework and 0.6273 for products based framework, however, the importance level of each indicators varies. The findings of this study contribute to more inclusion of the indicators under the social dimension and also depict the role of ergonomic approach to the sustainable development. Furthermore, the industrial managers and practitioners may consider the indicators priority information obtained in this study to plan the resource accordingly to achieve sustainable process and products.

    中文摘要 i Abstract iii Acknowledgements v Nomenclature viii List of Tables ix List of Figures x CHAPTER 1 INTRODUCTION 1 1.1 Background and Justification of the Study 1 1.2 Study Motivation and Objectives 5 1.3 Study Framework 6 1.4 Scope and Limitation of the Study 10 CHAPTER 2 LITERATURE REVIEW 11 2.1 Manufacturing Organization 11 2.2 Sustainability and Sustainable Manufacturing 12 2.3 Sustainability Dimensions/Pillars 17 2.4 Sustainability Indicators/factors/metrics 18 2.5 Related Studies on Sustainable Manufacturing 20 2.6 Sustainability and Ergonomics 26 CHAPTER 3 METHODOLOGY 29 3.1 Introduction 29 3.2 Participants of the survey 29 3.3 Methods of data analysis 31 3.4 Reliability of Questionnaire Item 38 CHAPTER 4 WORKERS-ACTIVITY BASED PRODUCTION PROCESS SUSTAINABILITY INDICATORS 40 4.1 Introduction 40 4.2 Workers-activity based indicators of production process sustainability framework 40 CHAPTER 5 DEVELOPMENT OF SUSTAINABILITY INDICATORS BASED ON PRODUCT LIFE CYCLE 47 5.1 Introduction 47 5.2. Framework of indicators of sustainable product based on ergonomics perspective 47 CHAPTER 6 RESULTS AND DISCUSSION 55 6.1.Results 55 6.1.1 Introduction 55 6.1.2 Result and Analysis for workers-activity based sustainability indicators 56 6.1.3 Result and analysis for ergonomics based indicators for sustainable products 63 6.2 Discussion 71 CHAPTER 7 CONCLUSION AND FUTURE DIRECTIONS 75 7.1 Research contributions 75 7.2 Future directions 76 REFERENCES 78 APPENDIX A- Questionnaire for process centered study 86 APPENDIX B- Questionnaire for product centered study 95 APPENDIX C- MATLAB code for the algorithm utilized 105

    Abdella, G. M., Kucukvar, M., Onat, N. C., Al-Yafay, H. M., & Bulak, M. E. (2020). Sustainability assessment and modeling based on supervised machine learning techniques: The case for food consumption. Journal of Cleaner Production, 251. doi:10.1016/j.jclepro.2019.119661
    Agostinho, F., Richard Silva, T., Almeida, C. M. V. B., Liu, G., & Giannetti, B. F. (2019). Sustainability assessment procedure for operations and production processes (SUAPRO). Science of The Total Environment, 685, 1006-1018. doi:https://doi.org/10.1016/j.scitotenv.2019.06.261
    Ahmad, S., & Wong, K. Y. (2018). Sustainability assessment in the manufacturing industry: a review of recent studies. Benchmarking, 25(8), 3162-3179. doi:10.1108/BIJ-08-2017-0214
    Ahmad, S., & Wong, K. Y. (2019). Development of weighted triple-bottom line sustainability indicators for the Malaysian food manufacturing industry using the Delphi method. Journal of Cleaner Production, 229, 1167-1182. doi:https://doi.org/10.1016/j.jclepro.2019.04.399
    Ahmad, S., Wong, K. Y., & Rajoo, S. (2019). Sustainability indicators for manufacturing sectors: A literature survey and maturity analysis from the triple-bottom line perspective. Journal of Manufacturing Technology Management, 30(2), 312-334. doi:10.1108/JMTM-03-2018-0091
    Badri Ahmadi, H., Kusi-Sarpong, S., & Rezaei, J. (2017). Assessing the social sustainability of supply chains using Best Worst Method. Resources, Conservation and Recycling, 126, 99-106. doi:https://doi.org/10.1016/j.resconrec.2017.07.020
    Beekaroo, D., Callychurn, D. S., & Hurreeram, D. K. (2019). Developing a sustainability index for Mauritian manufacturing companies. Ecological Indicators, 96, 250-257. doi:10.1016/j.ecolind.2018.09.003
    Butnariu, A., & Avasilcai, S. (2015). The Assessment of The Companies' Sustainable Development Performance. Procedia Economics and Finance, vol.23, pp.1233-1238. doi:10.1016/S2212-5671(15)00422-0
    Cao, Y., Wang, S., Yi, L., & Zhou, J. (2016) A Social Sustainability Assessment Model for Manufacturing Systems Based on Ergonomics and Fuzzy Inference System. In: Vol. 52. Smart Innovation, Systems and Technologies (pp. 639-648).
    Chen, D., Chu, X., Yang, X., Sun, X., Li, Y., & Su, Y. (2015). PSS solution evaluation considering sustainability under hybrid uncertain environments. Expert Systems with Applications, 42(14), 5822-5838. doi:10.1016/j.eswa.2015.04.003
    Chen, S.-M. (1998). Aggregating Fuzzy Opinions in the Group Decision-Making Environment. Cybernetics and Systems: An International Journal, 29(4), 363-376. doi:10.1080/019697298125641
    Commerce, T. U. S. D. o. (2009). U.S Department of Commerce, Sustainable manufacturing initiative. Paper presented at the In Proceedings of the 2 Annual Sustainable Manufacturing Summit 2009, Chicago, USA.
    Coskun, A., Zimmerman, J., & Erbug, C. (2015). Promoting sustainability through behavior change: A review. Design Studies, 41, 183-204. doi:https://doi.org/10.1016/j.destud.2015.08.008
    Dragan, Z., Saletic, Velasevic, D., & Mastorakis, N. (2002). Analysis of Basic Defuzzification Techniques. Proceedings of the 6th WSES international multiconference on circuits, systems, communications and computers.
    Eastwood, M. D., & Haapala, K. R. (2015a). An induction hardening process model to assist sustainability assessment of a steel bevel gear. The International Journal of Advanced Manufacturing Technology, 80(5), 1113-1125. doi:10.1007/s00170-015-7053-y
    Eastwood, M. D., & Haapala, K. R. (2015b). A unit process model based methodology to assist product sustainability assessment during design for manufacturing. Journal of Cleaner Production, 108, 54-64. doi:https://doi.org/10.1016/j.jclepro.2015.08.105
    Garbie, I. H. (2014). An analytical technique to model and assess sustainable development index in manufacturing enterprises. International Journal of Production Research, 52(16), 4876-4915. doi:10.1080/00207543.2014.893066
    Garetti, M., & Taisch, M. (2012). Sustainable manufacturing: trends and research challenges. Production Planning & Control, 23(2-3), 83-104. doi:10.1080/09537287.2011.591619
    George, B., & Maria, B. (1995). Fuzzy set, Fuzzy logic, applications: Advances in Fuzzy Systems-Applications and Theory (Vol. 5). Singapore: World Scientific Publishing CO.Pte.Ltd.
    Ghadimi, P., Azadnia, A. H., Mohd Yusof, N., & Mat Saman, M. Z. (2012). A weighted fuzzy approach for product sustainability assessment: a case study in automotive industry. Journal of Cleaner Production, 33, 10-21. doi:https://doi.org/10.1016/j.jclepro.2012.05.010
    Giret, A., Trentesaux, D., & Prabhu, V. (2015). Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 37, 126-140. doi:https://doi.org/10.1016/j.jmsy.2015.08.002
    GRI. (2006). Sustainability Reporting Guidelines. Retrieved from https://saiplatform.org/uploads/Modules/Library/GRI-sustainability-reporting-guidelines.pdf
    Gunasekaran, A., & Spalanzani, A. (2012). Sustainability of manufacturing and services: Investigations for research and applications. International Journal of Production Economics, 140(1), 35-47. doi:https://doi.org/10.1016/j.ijpe.2011.05.011
    Gupta, A., Jayal, A. D., Chimienti, M., & Jawahir, I. S. (2011). A Total Life-Cycle Approach towards Developing Product Metrics for Sustainable Manufacturing, Berlin, Heidelberg.
    Haapala, K., Zhao, F., Camelio, J., Sutherland, J., Skerlos, S., Dornfeld, D., Jawahir, I. s., Zhang, H.-C., Clarens, A., & Rickli, J. (2011). A Review of Engineering Research in Sustainable Manufacturing. ASME Conference Proceedings, 2011, 599-619. doi:10.1115/MSEC2011-50300
    Habidin, N., Zubir, A., Conding, J., Jaya, N., & Hashim, S. (2013). Sustainable Manufacturing Practices, Sustaining Lean Improvement and Sustainable Performance in Malaysian Automotive Industry. World Review of Entrepreneurship, Management and Sustainable Development, 9, 444-459.
    Haslam, R., & Waterson, P. (2013). Ergonomics and Sustainability. Ergonomics, 56 (3), 343-347. doi:http://dx.doi.org/10.1080/00140139.2013.786555
    Hauschild, M. Z., Herrmann, C., & Kara, S. (2017). An Integrated Framework for Life Cycle Engineering. Procedia CIRP, 61, 2-9. doi:https://doi.org/10.1016/j.procir.2016.11.257
    Hediger, W. (2000). Sustainable development and social welfare. Ecological Economics, 32(3), 481-492. doi:https://doi.org/10.1016/S0921-8009(99)00117-2
    Heink, U., & Kowarik, I. (2010). What are indicators? On the definition of indicators in ecology and environmental planning. Ecological Indicators, 10(3), 584-593. doi:https://doi.org/10.1016/j.ecolind.2009.09.009
    Herrmann, C., Bogdanski, G., Winter, M., Heinemann, T., Thiede, S., & Zein, A. (2011). Sustainability in Production Engineering - Holistic Thinking in Education -. Paper presented at the Advances in Sustainable Manufacturing: Proceedings of the 8th Global Conference on Sustainable Manufacturing.
    Hojnik, J., Biloslavo, R., Cicero, L., & Cagnina, M. R. (2019). Sustainability indicators for the yachting industry: Empirical conceptualization. Journal of Cleaner Production. doi:10.1016/j.jclepro.2019.119368
    Hsu, H. M., & Chen, C. T. (1996). Aggregation of fuzzy opinions under group decision making. Fuzzy Sets and Systems, 79(3), 279-285.
    Huck, S. W. (2011). Reading statistics and research (6th ed.). United States of America: Addison Wesley / Pearson.
    Husgafvel, R., Pajunen, N., Virtanen, K., Paavola, I.-L., Päällysaho, M., Inkinen, V., Heiskanen, K., Dahl, O., & Ekroos, A. (2014). Social sustainability performance indicators – experiences from process industry. International Journal of Sustainable Engineering. doi:http://dx.doi.org/10.1080/19397038.2014.898711
    Jasiulewicz-Kaczmarek, M., & Saniuk, A. (2015) Human factor in sustainable manufacturing. In: Vol. 9178. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 444-455).
    Jayakrishna, K., Vinodh, S., & Anish, S. (2016). A Graph Theory approach to measure the performance of sustainability enablers in a manufacturing organization. International Journal of Sustainable Engineering, 9(1), 47-58. doi:10.1080/19397038.2015.1050970
    Joung, C. B., Carrell, J., Sarkar, P., & Feng, S. C. (2013). Categorization of indicators for sustainable manufacturing. Ecological Indicators, 24, 148-157. doi:10.1016/j.ecolind.2012.05.030
    K. E. K, V., Vinodh, S., & Gurumurthy, A. (2018). Modelling and analysis of sustainable manufacturing system using a digraph-based approach. International Journal of Sustainable Engineering, 11(6), 397-411. doi:10.1080/19397038.2017.1420108
    Labuschagne, C., Brent, A. C., & van Erck, R. P. G. (2005). Assessing the sustainability performances of industries. Journal of Cleaner Production, 13(4), 373-385. doi:https://doi.org/10.1016/j.jclepro.2003.10.007
    Latif, H. H., Gopalakrishnan, B., Nimbarte, A., & Currie, K. (2017). Sustainability index development for manufacturing industry. Sustainable Energy Technologies and Assessments, 24, 82-95. doi:https://doi.org/10.1016/j.seta.2017.01.010
    Lee, H. S. (2002). Optimal consensus of fuzzy opinions under group decision making environment. Fuzzy Sets and Systems, 132(3), 303-315. doi:10.1016/S0165-0114(02)00056-8
    Li, Y., & Mathiyazhagan, K. (2018). Application of DEMATEL approach to identify the influential indicators towards sustainable supply chain adoption in the auto components manufacturing sector. Journal of Cleaner Production, 172, 2931-2941. doi:https://doi.org/10.1016/j.jclepro.2017.11.120
    Lim, C. I., & Biswas, W. K. (2018). Development of triple bottom line indicators for sustainability assessment framework of Malaysian palm oil industry. Clean Technologies and Environmental Policy, 20(3), 539-560. doi:10.1007/s10098-017-1453-7
    Lin, C. J., Belis, T. T., Caesaron, D., Jiang, B. C., & Kuo, T. C. (2020). Development of Sustainability Indicators for Employee-Activity Based Production Process Using Fuzzy Delphi Method. Sustainability, 12(16), 6378.
    Lin, C. J., Belis, T. T., & Kuo, T. C. (2019). Ergonomics-Based Factors or Criteria for the Evaluation of Sustainable Product Manufacturing. Sustainability, 11(18), 4955.
    Lu, C., Lan, J., & Wang, Z. (2006). Aggregation of fuzzy opinions under group decision-making based on similarity and distance. Journal of Systems Science and Complexity, 19(1), 63-71. doi:10.1007/s11424-006-0063-y
    Madanchi, N., Thiede, S., Sohdi, M., & Herrmann, C. (2019) Development of a sustainability assessment tool for manufacturing companies. In. Sustainable Production, Life Cycle Engineering and Management (pp. 41-68).
    Martin, K., Legg, S., & Brown, C. (2013). Designing for sustainability: ergonomics – carpe diem.,. Ergonomics, 56(3), 365-388. doi:10.1080/00140139.2012.718368
    McKenzie, S. (2004). Social sustainability: towards some definitions. In: Hawke Research Institute, University of South Australia
    Meyer, F., Eweje, G., & Tappin, D. (2017). Ergonomics as a tool to improve the sustainability of the workforce. Work, 57(3), 339-350. doi:10.3233/wor-172563
    Mihelcic, J. R., Crittenden, J. C., Small, M. J., Shonnard, D. R., Hokanson, D. R., Zhang, Q., Chen, H., , Sorby, S. A., James, V. U., Sutherland, J. W., and , & Schnoor, J. L. (2003). Sustainability Science and Engineering: The Emergence of a New Metadiscipline. Environmental Science and Technology, 37, 5314–5324.
    Murray, T. J., Pipino, L. L., & Gigch, J. P. (1985). A Pilot Study of Fuzzy Set Modification of Delphi. Human Systems Management, 5, 76-80.
    N. Amira M. Saffie, Nur ‘Amirah Mohd Shukor, & Rasmani, K. A. (2016). Fuzzy Delphi Method: Issues and Challenges. IEEE.
    Ocampo, L. A. (2015). A hierarchical framework for index computation in sustainable manufacturing. Advances in Production Engineering and Management, 10(1), 40-50. doi:10.14743/apem2015.1.191
    OECD. (2008). Sustainable development. Linking economy, society, environment. . Retrieved from https://www.oecd-ilibrary.org/environment/sustainable-development_ 9789264055742-en.
    Oliveira Neto, G. C. d., Pinto, L. F. R., Amorim, M. P. C., Giannetti, B. F., & Almeida, C. M. V. B. d. (2018). A framework of actions for strong sustainability. Journal of Cleaner Production, 196, 1629-1643. doi:https://doi.org/10.1016/j.jclepro.2018.06.067
    Papetti, A., Gregori, F., Pandolfi, M., Peruzzini, M., & Germani, M. (2018). IoT to Enable Social Sustainability in Manufacturing Systems.
    Radjiyev, A., Qiu, H., Xiong, S., & Nam, K. (2015). Ergonomics and sustainable development in the past two decades (1992–2011): Research trends and how ergonomics can contribute to sustainable development. Applied Ergonomics, 46, 67-75. doi:https://doi.org/10.1016/j.apergo.2014.07.006
    Ryan, B., & Wilson, J. R. (2013). Ergonomics in the development and implementation of organisational strategy for sustainability. Ergonomics, 56(3), 541-555. doi: 10.1080/00140139.2012.718372
    Saad, M. H., Nazzal, M. A., & Darras, B. M. (2019). A general framework for sustainability assessment of manufacturing processes. Ecological Indicators, 97, 211-224. doi:https://doi.org/10.1016/j.ecolind.2018.09.062
    Sabaghi, M., Mascle, C., Baptiste, P., & Rostamzadeh, R. (2016). Sustainability assessment using fuzzy-inference technique (SAFT): A methodology toward green products. Expert Systems with Applications, 56, 69-79. doi:https://doi.org/10.1016/j.eswa.2016.02.038
    Sánchez-Lezama, A. P., Cavazos-Arroyo, J., & Albavera-Hernández, C. (2014). Applying the Fuzzy Delphi Method for determining socio-ecological factors that influence adherence to mammography screening in rural areas of Mexico. Cadernos de Saude Publica, 30(2), 245-258. doi:10.1590/0102-311X00025113
    Sanders, M. S., & McComick, E. J. (1993). Human factors in engineering and design: McGraw-Hill,Inc.
    Sangwan, K. S., Bhakar, V., & Digalwar, A. K. (2019). A sustainability assessment framework for cement industry – a case study. Benchmarking. doi:10.1108/BIJ-01-2018-0021
    Schuch Bork, C. A., de Souza, J. F., de Oliveira Gomes, J., Venancio Pappetti Canhete, V., & De Barba, D. J. (2016). Methodological tools for assessing the sustainability index (SI) of industrial production processes. International Journal of Advanced Manufacturing Technology, 87(5-8), 1313-1325. doi:10.1007/s00170-014-6684-8
    Shrivastava, P., & Berger, S. (2010). Sustainability principles: a review and directions. Organization Management Journal, 7(4), 246-261. doi:10.1057/omj.2010.35
    Shuaib, M., Seevers, D., Zhang, X., Badurdeen, F., Rouch, K. E., & Jawahir, I. S. (2014). Product Sustainability Index (ProdSI) A Metrics-based Framework to Evaluate the Total Life Cycle Sustainability of Manufactured Products. Journal of Industrial Ecology, 18(4), 491-507. doi:http://dx.doi.org/10.1111/jiec.12179
    Singh, S., Olugu, E. U., & Fallahpour, A. (2014). Fuzzy-based sustainable manufacturing assessment model for SMEs. Clean Technologies and Environmental Policy, 16(5), 847-860. doi:10.1007/s10098-013-0676-5
    Stephen, L., & Craig, B. (2010). Achieving transition to sustainability: lessons from human factors and ergonomics. Paper presented at the 4th International Conference on Sustainability Engineering and Science, 2010 November, Auckland, New Zealand.
    Sutherland, J. W., Richter, J. S., Hutchins, M. J., Dornfeld, D., Dzombak, R., Mangold, J., Robinson, S., Hauschild, M. Z., Bonou, A., Schönsleben, P., & Friemann, F. (2016). The role of manufacturing in affecting the social dimension of sustainability. CIRP Annals, 65(2), 689-712. doi:https://doi.org/10.1016/j.cirp.2016.05.003
    Taherdoost, H. (2016). Validity and Reliability of the Research Instrument; How to Test the Validation of a Questionnaire/Survey in a Research. International Journal of Academic Research in Management, 5, 28-36. doi:10.2139/ssrn.3205040
    Thatcher, A. (2016). Longevity in a sustainable human factors and ergonomics system-of-systems.
    Thatcher, A., Waterson, P., Todd, A., & Moray, N. (2017). State of Science: ergonomics and global issues Ergonomics. doi:10.1080/00140139.2017.1398845
    UN-CSD. (2007). Indicators of Sustainable Development: Guidelines and Methodologies. Retrieved from United Nations, New York: https://sustainabledevelopment.un.org/content/documents/guidelines.pdf
    UNs. (2012). Report of the United Nations Conference on Environment and Development In: Rio Declaration on Environment and Development. Retrieved from
    UNs. (2015). Sustainable development goals: 17 Goals to transform our world. (June 24,2020).
    Veleva, V., & Ellenbecker, M. (2001). Indicators of sustainable production: Framework and methodology. Journal of Cleaner Production, 9(6), 519-549. doi:10.1016/S0959-6526(01)00010-5
    Vinodh, S. (2011). Assessment of sustainability using multi-grade fuzzy approach. Clean Technologies and Environmental Policy, 13(3), 509-515. doi:10.1007/s10098-010-0333-1
    WCED. (1987). Report of the World Commission on Environment and Development: Our Common Future. Retrieved from Oxford, UK:Oxford University Press
    Widok, A. H., & Wohlgemuth, V. (2014). Social Sustainability and Manufacturing Simulation Defining Social Criteria for a Holistic Sustainability Simulation Approach in Manufacturing Companies. Paper presented at the The Sixth International Conference on Advances in System Simulation.
    Winroth, M., Almström, P., & Andersson, C. (2012). Sustainable indicators at factory level - A framework for practical assessment.
    Wise, J. (2001). Human Factors & the Sustainable Design of Built Environments. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 45, 808-812. doi:10.1177/154193120104501006
    Xu, Y., & Wang, H. (2013). Optimal weight determination and consensus formation under fuzzy linguistic environment. Paper presented at the Procedia Computer Science.
    Zarte, M., Pechmann, A., & Nunes, I. L. (2019a). Decision support systems for sustainable manufacturing surrounding the product and production life cycle – A literature review. Journal of Cleaner Production, 219, 336-349. doi:10.1016/j.jclepro.2019.02.092
    Zarte, M., Pechmann, A., & Nunes, I. L. (2019b). Indicator framework for sustainable production planning and controlling. International Journal of Sustainable Engineering. doi:10.1080/19397038.2019.1566410
    Zarte, M., Pechmann, A., & Nunes, I. L. (2019c) Indicators and goals for sustainable production planning and controlling from an ergonomic perspective. In: Vol. 781. Advances in Intelligent Systems and Computing (pp. 363-373).
    Zarte, M., Pechmann, A., & Nunes, I. L. (2020) System-of-systems approach for sustainable production planning and controlling in manufacturing companies. In: Vol. 959. Advances in Intelligent Systems and Computing (pp. 413-421).
    Zhang, L., Xu, X., & Tao, L. (2013). Some similarity measures for triangular fuzzy number and their applications in multiple criteria group decision-making. Journal of Applied Mathematics, 2013. doi:10.1155/2013/538261
    Zink, K. J., Steimle, U., & Fischer, K. (2008). Human Factors, Business Excellence and Corporate Sustainability: Differing Perspectives, Joint Objectives. In K. J. Zink (Ed.), Corporate Sustainability as a Challenge for Comprehensive Management (pp. 3-18). Heidelberg: Physica-Verlag HD.

    無法下載圖示 全文公開日期 2025/12/23 (校內網路)
    全文公開日期 2030/12/23 (校外網路)
    全文公開日期 2030/12/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE