簡易檢索 / 詳目顯示

研究生: 林育寬
Yu-Kuan Lin
論文名稱: 演化式鋪面維護推論模式之研究-以臺北市市區道路為例
Evaluation of Urban Road Using Evolutionary International Roughness Index Inference Model - A Case Study in Taipei
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 黃兆龍
Chao-Lung Hwang
吳育偉
Yu-Wei Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 106
中文關鍵詞: 國際糙度指標市區道路維護生物共生演算法-最小平方差支持向量機
外文關鍵詞: International Roughness Index, Urban Road Maintance, Symbiotic Organisms Search Hybrid Least Squares SVM(SOS-LSSVM)
相關次數: 點閱:230下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著經濟發展人們對交通運輸的需求也日益增加,政府乃積極推動各種交通建設。如今國內的市區道路已逐漸飽和,從原本的新建工程轉為養護工程,面對數量如此龐大的道路,維護管理就變成一個很重要的課題。而本研究之鋪面維護推論模式是基於影響鋪面的因子對IRI的變化量進行預測,經由準確的預測結果,作為日後道路管理單位排定路段更新計畫與經費安排的參考。
    本研究透過案例學習發展建立鋪面維護推論模式,首先整理相關文獻,並利用影響圖和因子篩選表來彙整鋪面影響因子,再結合國際糙度指標(IRI),確認輸入與輸出變數並建立案例資料庫,作為鋪面維護推論模式之基礎。接著應用 Symbiotic Organisms Search - Least Squares Support Machine(SOS-LSSVM)[1]為推論模式之核心,學習歷史案例,找出輸入變數與道路平坦度之間的映射關係,進而選擇維護路段並計算維修費用。藉此作為臺北市政府在管理市區道路時分配維修經費的依據。
    本研究之鋪面維護推論模式,其預測結果為高精確、高相關且變異性小而穩定,經由結果比較後,證實可提供較其他人工智慧模式更佳的預測準確率,以協助管理單位即時管控道路情形。


    With the development of the social economy, the people demands of transportation is growing day by day, to satisfy citizen's desire, government actively promoting lots of transport infrastructure. Now the internal urban road is approach to saturation and reach the conversion from construction to management, face so many road isnʼt an easy job, so that's why management is so important. In this research, the Evolutionary International Roughness Index Inference Model used the influence factors of pavement to predict the IRI change between two years. Through a precise prediction of IRI, the management unit can’t arrange road section update and funds distribution of city road.
    This research established the Evolutionary International Roughness Index Inference Model by learning the historical cases. First, the related references was collected and then the influence diagram and the filter diagram were used to figure out the influence factors of pavement. The next step is to combine them
    to International Roughness Index(IRI). Furthermore, the input and the output variables were identified to establish the database of historical cases which is the base of the model. Second, the Symbiotic Organisms Search - Least Squares Support Machine (SOS-LSSVM) was applied to the model as its main core in order to discover the relationship between the input (influence factors ) , and the output variables(Estimate the IRI changes between two years) which can be combine with last year IRI then you can get this year IRI. According to the result management unit can decide the priority of road maintance and calculate the expense.
    The obtained results show that this research can provide a highly accurate and stable forecasting. By comparing the results with other Artificial Intelligence (AI) methods, it is confirmed that Evolutionary International Roughness Index Inference Model is useful way to control road situation.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1-1研究背景與動機 1 1-2研究目的 2 1-3研究範圍與限制 3 1-4研究內容與流程 4 1-5論文架構 7 第二章 文獻回顧 8 2-1臺北市市區道路巡查 8 2-2鋪面養護決策評估 13 2-2-1評估指標 13 2-2-2道路養護作業流程與策略 22 2-2-3道路養護優先排序 26 2-3鋪面養護作業 29 2-3-1緊急養護方法 29 2-3-2一般養護方法 30 2-3-3大型養護方法 31 2-4影響鋪面之因素 32 2-5人工智慧 35 2-5-1倒傳遞類神經網路(BPNN) 35 2-5-2支持向量機(SVM) 37 2-5-3最小平方差支持向量機(LS-SVM) 39 2-5-4 演化式支持向量機推論模式(ESIM) 41 2-5-5演化式最小平方差支持向量機(ELSIM) 42 2-5-6 Symbiotic Organisms Search–LSSVM(SOS-LSSVM) 43 第三章 鋪面維護推論模式 48 3-1建立推論模式流程 48 3.2確立初步影響因子 50 3-3建立案例資料庫 56 3-3-1案例蒐集 56 3-3-2因子篩選 58 3-3-3確認因子輸入變數及輸出變數 60 3-3-4資料處理 61 3-4建立鋪面維護推論模式 63 3-4-1案例正規化 63 3-4-2交叉驗證 64 3-4-3 SOS-LSSVM之應用 65 3-4-4誤差衡量指標 68 3-5推論模式結果與比較 71 3-5-1推論模式結果 71 3-5-2模式結果比較 73 第四章 推論模式之應用 75 4-1養護作業費用 75 4-2案例資料及輸出結果 77 4-3處置措施 79 第五章 結論與建議 81 5-1結論 81 5-2建議 82 參考文獻 83 附錄 88 圖1 - 1 研究流程圖 4 圖2 - 1 臺北市政府工務局新建工程處組織架構圖 9 圖2 - 2 臺北市道路維護系統分工圖 11 圖2 - 3 道路查報資訊系統及架構圖 12 圖2 - 4 PCI 破壞類型分類及評估分級圖 14 圖2 - 5 路面現況服務能力評分(PSR) 16 圖2 - 6 柔性鋪面國際糙度指標(IRI)評估圖 19 圖2 - 7 第1代路面檢測車(ARAN)照片 20 圖2 - 8 鋪面維護自動化流程圖 20 圖2 - 9 政府機關例行性養護作業流程圖 23 圖2 - 10 政府機關計畫性養護作業流程圖 24 圖2 - 11 道路養護決策支援系統作業流程圖 25 圖2 - 12 鋪面養護優先順序決定方法之決策樹例 28 圖2 - 13 倒傳遞類神經網路架構圖 36 圖2 - 14可容錯線性SVR模式 37 圖2 - 15 支持向量機最佳化模式架構 41 圖2 - 16 演化式最小平方差支持向量機模式架構圖 42 圖2 - 17 生物共生演算法(SOS)流程圖 44 圖2 - 18 SOS-LSSVM流程圖 45 圖3 - 1 推論模式流程圖 48 圖3 - 2 鋪面影響圖 50 圖3 - 3 道路施工案件查詢服務網–挖掘案件查詢 56 圖3 - 4 道路施工案件查詢服務網–道路坑洞查詢 57 圖3 - 5 交通管制工程處資訊網–交通流量調查資料 57 圖3 - 6 鋪面影響因子層級圖 60 圖3 - 7 十折案例資料之預測誤差衡量指標示意圖 67 圖3 - 8 人工智慧MAPE比較圖 74 表2 - 1 PCR評級區間表 15 表2 - 2 平坦度標準差d2係數表 21 表2 - 3 騎乘指數與路面服務水準對照表 22 表2 - 4 影響鋪面之因素 32 表3 - 1 因子篩選表 51 表3 - 2 初步影響因子 52 表3 - 3 第一階段因子(文獻整理) 53 表3 - 4 第二階段因子(公文回覆) 54 表3 - 5 評估因子與IRI變化量相關性分析表 58 表3 - 6 相關性分析結果整理表 59 表3 - 7 本模式之因子 59 表3 - 8 案例數據範例 61 表3 - 9 輸入變數統計表 62 表3 - 10 交叉驗證示意表 64 表3 - 11 訓練案例集範例 65 表3 - 12 SOS-LSSVM參數設定 66 表3 - 13 測試案例集輸出結果範例 66 表3 - 14 MAPE的評估標準 68 表3 - 15 相關係數說明 69 表3 - 16 SOS-LSSVM十折預測結果 71 表3 - 17 SOS-LSSVM十折參數搜尋結果 72 表3 - 18 人工智慧結果比較表 73 表4 - 1 案例基本資料 77 表4 - 2 輸入變數 78 表4 - 3 輸出結果 78 表4 - 4 現有做法 79 表4 - 5 預測結果 79

    [1]M.-Y. Cheng, Doddy Prayogo, Yu-Wei Wu (in preparation). Predicting the Pavement Rutting Behavior of Asphalt Mixtures Using Symbiotic Organisms Search - Least Squares Support Vector Machine Inference Model. Construction and Building Materials.
    [2]臺北市政府, 1993, 臺北市市區道路管理規則
    [3]臺北市政府工務局新建工程處網站, 2017, 臺北市政府工務局新建工程處組織圖
    [4]臺北市政府工務局新建工程處, 2014, 103年度道路預約式契約維護修繕工程履約程
    [5]林昆虎, 2015, 市區道路網級鋪面管理架構建立之研究-以臺北市為例, 碩士論文, 國立中央大學
    [6]Shahin, M.Y. and S.D. Kohn, 1981, Pavement Maintenance Management for Roads and Parking Lots, U.S.A.C.E.R. Laboratory, Champain, IL
    [7]FHWA, 1985, Pavement Condition Rating Guide
    [8]Kraft, D.C., 1983, Pavement Serviceability indices
    [9]AASHTO, 1986, Guide for Design of Pavement Structures
    [10]Colucci-Rios, B., k. C., and Sinha., 1985, Optimal Pavement Management Approach Using Roughness Measurements, TRB
    [11]何旻哲, 2014, 國道高速公路平坦度檢測及舒適性指標分析之研究, 碩士論文, 國立中央大學
    [12]A.E., Standard Practice for Computing International Roughness Index of Roads from Longitudinal Profile Measurements, 1926-98
    [13]World Bank Technical Paper 46, Guidelines for Conducting and Calibrating Road Roughness Measurements
    [14]陳志霖、黃三哲、許阿明, 2014, 省道IRI平整度分析運用於鋪面工程維護, 臺灣公路工程第40卷第1期pp.2-20
    [15]邱垂德, 2000, 路面平坦度驗收規範之檢討研究, 交通部台灣區國道新建工程局
    [16]林元生, 2004, 智慧型鋪面檢測車應用於鋪面平坦度之研究, 碩士論
    文, 國立中央大學
    [17]張之明, 2003, 建立市區道路鋪面PCI值之管理維護機制之研究, 碩士論文, 國立臺北科技大學
    [18]Haas, R., W.R. Hudson, and J. Zaniewski, 1994, Modern Pavement Management, Krieger Publishing Company, Florida
    [19]C., E., N. Jr., and W.-H. Kuo, 1992, Role of Pavement Management System Analysis in Preservation Program Developmen, Transportation Research Record 1344,pp.1~8
    [20]交通部運研所, 1993, 台灣地區一般公路鋪面養護管理系統建立之研究(第二期)
    [21]侯羿、賴森榮, 1986, 台灣區高速公路器面養護管理系統第一期期末報告
    [22]Mohseni, A., et al., 1990, Illinis Pavement Network Rehabilitation Management Program, Transportation Research Record 1272, pp.85-95
    [23]Wang, K.C.P. and J.P. Zaniewski, 1995, Optimizaion Techniques for Pavement Management, Proceedings of the 8th Conference of Road Engineering Association of Asia and Australasia, pp.157-162
    [24]許時豪, 2001, 柔性鋪面養護與維修技術智慧型諮詢系統雛形之建立, 碩士論文, 淡江大學
    [25]交通部公路總局, 2013, 公路養護手冊
    [26]洪慶華, 2011, 柔性鋪面修復週期與特定影響因子之研析-以公路總局中壢工務段為例, 碩士論文, 國立中央大學
    [27]陳浩賢, 2009, 發展柔性鋪面養護知識網, 博士論文, 國立中央大學
    [28]呂雨蓉, 2004, 力學觀點探討不同柔性鋪面成效分析之研究, 博士論文, 國立中央大學
    [29]Lijun Sun, 2016, Structural Behavior of Asphalt Pavements
    [30]Panagiotis Ch. Anastasopoulos, Md Tawfiq Sarwar, Venky N. Shankar, 2016, Safety-oriented pavement performance thresholds: Accounting for unobserved heterogeneity in a multi-objective optimization and goal programming approach
    [31]Karol R. Opara, Marek Skakuj, Markus Stöckner, 2016, Factors affecting raveling of motorway pavements—A field experiment with new additives to the deicing brine
    [32]Pooyan Ayar, Fernando Moreno-Navarro,Mª Carmen Rubio-Gámez, 2016, The healing capability of asphalt pavements: a state of the art review
    [33]C.A. O’Flaherty, 2002, Highways (Fourth Edition):the location, design, construction and maintenance of road pavements
    [34]Ko, C. H., 1999, Computer aided decision support system for disaster prevention of hillside residents, MS thesis, National Taiwan University of Science and Technology
    [35]Fukahori, K. and Kubota, Y., 2000, Consistency evaluation of landscape design by a decision support system, Computer-Aided Civil and Infrastructure Engineering, 15(5), 342-354
    [36]Sundin, S and Braban-Ledoux, C., 2001, Artificial intelligence-based decision support technologies in pavement management, Computer-Aided Civil and Infrastructure Engineering, 16(2), 143-157
    [37]M.-Y. Cheng, Y.-W. Wu, 2009, Evolutionary support vector machine inference system for construction management, Automation in Construction, 18(5): 597-604
    [38]M.-Y. Cheng, P.M. Firdausi, D. Prayogo, 2014, High-performance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT). Engineering Applications of Artificial Intelligence, 29: 104-113
    [39]M.-Y. Cheng, D. Prayogo, Y.-W. Wu, 2014, Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete Mixture. Journal of Computing in Civil Engineering, 28(4):06014003
    [40]M.-Y. Cheng, D.K. Wibowo, D. Prayogo, A.F.V. Roy, 2015, Predicting productivity loss caused by change orders using the evolutionary fuzzy support vector machine inference model. Journal of Civil Engineering and Management, 21(7): 881-892
    [41]M.-Y. Cheng, N.-D. Hoang, Y.-W. Wu, 2013, Hybrid intelligence approach based on LS-SVM and Differential Evolution for construction cost index estimation: A Taiwan case study. Automation in Construction, 35: 306-313
    [42]M.-Y. Cheng, A.F.V. Roy, 2011, Evolutionary fuzzy decision model for cash flow prediction using time-dependent support vector machines. International Journal of Project Management, 29(1): 56-65
    [43]M.-Y. Cheng, M.-T. Cao, 2014, Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams. Engineering Applications of Artificial Intelligence, 28: 86-96
    [44]D. Prayogo, 2012, A Novel Genetic Algorithm-Based Evolutionary Support Vector Machine for Optimizing High-Performance Concrete, Master Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology
    [45]D.E. Goldberg, K. Deb, H. Kaegupta, and G. Harik, 1993, Rapid, accurate optimization of difficult problems using fast messy genetic algorithms
    [46]Suykens, J., et al., 2002, Least Square Support Vector Machines. World Scientific Publishing Co. Pte. Ltd
    [47]Min-Yuan Cheng and Nhat-Duc Hoang, 2012, Evolutionary Least Squares Support Vector Machine – Userguide, Technical Report, CIC Lab, National Taiwan Univ. of Sci. and Tech
    [48]M.-Y. Cheng, Y.-W. Wu, 2009, Evolutionary support vector machine inference system for construction management, Automation in Construction, 18(5): 597-604
    [49]M.-Y. Cheng, L.-C. Lien, (2012), Hybrid Artificial Intelligence–Based PBA for Benchmark Functions and Facility Layout Design Optimization, Journal of Computing in Civil Engineering 26 (5): 612-624
    [50]M.-Y. Cheng, D. Prayogo, Y.-W. Wu, M.M. Lukito, 2016, A Hybrid Harmony Search algorithm for discrete sizing optimization of truss structure, Automation in Construction 69: 21-33
    [51]M.-Y. Cheng, D. Prayogo, 2016, A novel fuzzy adaptive teaching–learning-based optimization (FATLBO) for solving structural optimization problems, Engineering with Computers: 1-15
    [52]M.-Y. Cheng, D. Prayogo, Prayogo D., 2014, Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers & Structures, 139: 98-112
    [53]D. Prayogo, 2015, An Innovative Parameter-Free Symbiotic Organisms Search (SOS) for Solving Construction-Engineering Problems, PhD thesis, Department of Construction Engineering, National Taiwan University of Science and Technology
    [54]G.G. Tejani, V.J. Savsani, Patel V. K., 2016, Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. Journal of Computational Design and Engineering
    [55]M.-Y. Cheng, D. Prayogo, D.-H. Tran, 2015, Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic Organisms Search. Journal of Computing in Civil Engineering: 04015036
    [56]D.-H. Tran, M.-Y. Cheng, D. Prayogo, 2016, A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time–cost–labor utilization tradeoff problem. Knowledge-Based Systems, 94: 132-145
    [57]M.-Y. Cheng, C.-K. Chiu, Y.-F. Chiu, Y.-W. Wu, Z.-L. Syu, D. Prayogo, C.-H. Lin, 2014, SOS optimization model for bridge life cycle risk evaluation and maintenance strategies. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 26(4): 293-308
    [58]S. Duman, 2016, Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones. Neural Computing and Applications: 1-15
    [59]H. Kamankesh, V.G. Agelidis, A. Kavousi-Fard, 2016, Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand. Energy, 100: 285-297
    [60]E. Ruskartina, V.F. Yu, B. Santosa, A.A.N.P. Redi, 2015, Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 101: 857-861
    [61]A. Panda, S. Pani, 2016, A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Applied Soft Computing, 46: 344-360
    [62]行政院公共工程委員會, 2011, 第02741章 瀝青混凝土之一般要求
    [63]行政院公共工程委員會, 2013, 第02796章 密級配改質瀝青混凝土鋪面
    [64]Lewis, C. D., 1982, International and Business Forecasting Methods. London: Butterwo

    QR CODE