簡易檢索 / 詳目顯示

研究生: Getinet Asrat Mengesha
Getient Asrat Mengesha
論文名稱: 以液態電漿氧化技術改善純鋁抗腐蝕與附著強度之研究
Research of the corrosion resistance and adhesion strength improvement on pure aluminum by plasma electrolytic oxidation technique
指導教授: 朱瑾
Jinn P. Chu
李志偉
Jyh-Wei Lee
口試委員: 朱瑾
Jinn P. Chu
李志偉
Jyh-Wei Lee
駱碧秀
Bih-Show Lou
葛明德
Ming-Der Ger
郭俞麟
Yu-Lin Kuo
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 130
中文關鍵詞: 電漿電解氧化純鋁Si3N4奈米顆粒硼砂耐蝕性附著強度摩擦係數
外文關鍵詞: Plasma electrolytic oxidation, pure aluminum, Si3N4 nanoparticle, borax, corrosion resistance, adhesion strength, coefficient of friction
相關次數: 點閱:339下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    鋁已廣泛用於工業和日常生活中。鋁最常見的用途是建造運輸工具(因更輕的重量使得移動交通工具只需更少的力,從而提高了燃油效率)、電纜應用(低密度使其成為長距離輸電線的最佳選擇)、消費品(智能手機、平板電腦、筆記型電腦和平板電視)以及建築材料(高鐵、地鐵,輪船和火箭的建造)。然而,由於鋁在腐蝕環境中有較差的耐腐蝕性能和較低的表面硬度,因而限制其應用範圍。因此已有許多方法來控制鋁的損壞速率,其中電漿電解氧化(PEO)是最有前途的方法。 PEO是一種電漿輔助陽極氧化製程,可以將鋁的表面轉化為陶瓷層,從而防止腐蝕性介質接觸基材。因此可以降低其腐蝕速率。此外,在PEO製程使用適當的電解質可以產生高度保護性的鍍層。由於鋁具有可貴的性質,因此已有許多人投入PEO的研究,以提升其腐蝕保護力及表面硬化能力。本研究中有系統的研究純鋁的PEO技術及其產生的氧化層特性。透過漸進式的研究,有效地提高了純鋁的耐腐蝕性能和氧化層附著強度。
    在第一個研究中,固定電源頻率,使用兩種不同的鹼性電解質,並改變添加Si3N4奈米粒子的濃度(0、0.5和1.5 gL-1)和不同的電源佔空比(25%,50%和80%)。藉由在3.5 wt%的NaCl溶液中的動電位極化試驗研究PEO氧化層的抗腐蝕性能。由結果顯示,隨著Si3N4奈米顆粒的濃度和佔空比的增加,PEO生長的氧化層重量、厚度和表面粗糙度增加。使用Na2B4O7.10H2O的電解質所生長的氧化物比其他添加Si3N4奈米顆粒生長的PEO氧化層具有優異的耐腐蝕性和低表面粗糙度。然而,在電解液中添加Si3N4奈米顆粒並不能改善PEO薄膜的腐蝕性能,這是因為無法形成緻密的微結構使然。
    在第二個研究,改變電解質添加硼砂(Na2B4O7.10H2O)的濃度(0、1.5、3、4.5和6 gL-1),並固定佔空比、固定陽極和陰極電流的雙極脈衝模式電源來對純Al進行PEO處理。本研究使用動電位極化試驗和電化學阻抗分析來探討氧化層在3.5 wt% NaCl溶液的耐腐蝕性。我們發現,隨著硼砂濃度的增加,PEO生長氧化膜的表面平均孔徑和孔隙率降低。當電解液中含有高濃度硼砂時,可以形成緻密結構的氧化膜。,使得PEO生成的氧化層耐蝕性增加。藉由使用含有6 gL-1硼砂的電解液來對純鋁做PEO處理可使其耐蝕性得到極大的提升,達23058倍,這是因為氧化層是緻密的γ-Al2O3相且具有較少的缺陷所致。
    在第三個研究中,使用不同的佔空比(25%,50%和80%)和固定頻率,在矽酸鈉基電解液添加不同濃度的Si3N4(0-2.5 gL-1)奈米顆粒。由結果顯示,PEO崩潰電壓隨著Si3N4奈米顆粒濃度的增加而降低,並且隨著佔空比的增加而降低。隨著添加Si3N4奈米顆粒濃度的增加,PEO生長的氧化層厚度,表面粗糙度和附著強度也隨之增加。若是使用固定Si3N4添加濃度(2.5 gL-1)的電解液來做PEO處理,其生成氧化物的表面粗糙度,厚度和摩擦係數隨著佔空比的降低而降低。另一方面,當佔空比從80%降低到25%時,附著強度和耐磨性也有增加的趨勢。使用2.5 gL-1 Si3N4奈米顆粒電解液,佔空比為25%的PEO製程所生長的氧化層,具有最佳的附著強度,14.85 N及較低的摩擦係數。最後我們可以結論,於PEO電解質中添入硼砂和Si3N4奈米顆粒會影響純鋁生成氧化層的耐腐蝕性和附著強度。


    Abstract
    Aluminum has been widely used in industry and daily life. The most common use of aluminum is to construct transportation, electrical, consumer goods and construction materials. However, the application of aluminum material is still limited due to its intrinsically poor corrosion performance in the corrosive environments and low surface hardness. Therefore, various methods have been explored to control the degradation rate of aluminum, of which plasma electrolytic oxidation (PEO) is the most promising method. PEO is a plasma-assisted anodising process that can convert the surface of aluminum into a ceramic layer, thus preventing the corrosive medium contacting the substrate; therefore, the degradation rate can be reduced. Furthermore, highly protective coatings can be produced when appropriate electrolytes are used in the PEO process.
    Motivated by the valuable properties of aluminum, corrosion protection and surface hardening provided by the PEO technique, considerable efforts have been devoted towards the development of surface engineering on aluminum based on PEO protection.
    In this study, PEO processes on pure aluminum and the resulting coating characteristics were systematically studied. Through this progressive study, the corrosion performance and the adhesion strength of the pure aluminum were effectively improved.
    In the first study, by using two different alkaline electrolytes with different addition concentrations of Si3N4 nanoparticles (0, 0.5 and 1.5 gL-1) and different duty cycles (25%, 50% and 80%) at a fixed frequency. The corrosion properties of PEO coatings were investigated by the potentiodynamic polarization test in 3.5 wt.% NaCl solutions. It showed that the weight gains, layer thickness and surface roughness of the PEO grown oxide increased with increasing concentrations of Si3N4 nanoparticles and duty cycles. The PEO grown oxide using the Na2B4O7.10H2O contained electrolyte showed an excellent corrosion resistance and low surface roughness than other PEO coatings grown with Si3N4 nanoparticle additives. However, the corrosion performance of PEO coatings was not improved by the addition of Si3N4 nanoparticle in the electrolytic solutions possibly due to its detrimental effect to the formation of dense microstructure.
    In the second study, PEO treatment was conducted on pure Al using a power supply under a bipolar pulsed mode with constant duty cycle, fixed anodic and cathodic currents. The effect of different concentrations of borax (Na₂B₄O₇∙10H₂O), i.e., 0, 1.5, 3, 4.5 and 6 gL-1 in the electrolyte on the corrosion resistance of PEO grown oxide coatings in 3.5 wt.% NaCl solution was comprehensively studied by a potentiodynamic polarization test and electrochemical impedance spectroscopy method. We found that the average pore size and porosity on the PEO grown oxide coating decreased with increasing borax concentration. The dense microstructure of oxide coating can be seen when the borax concentration in the electrolyte was high. The corrosion resistance of PEO coating increased with increasing borax content. The corrosion resistance of pure Al was greatly improved up to 23058 times higher by the formation of a PEO layer treated in the electrolyte containing 6 gL-1 borax due to its ability to grow a dense -Al2O3 phase with less defects.
    In the third study, by using a sodium silicate-based electrolyte with different concentrations of Si3N4 (0 - 2.5gL-1) additives at different duty cycles (25%, 50% and 80%) and a fixed frequency. It showed that the breakdown voltage decreased with increasing concentration of Si3N4 nanoparticles and it also decreased with increasing duty cycles from 25% to 80%. The coating thickness, surface roughness and adhesion strength of PEO grown oxide layer increased with increasing Si3N4 nanoparticle concentration. For the PEO grown oxide with the same amount of Si3N4 concentration (2.5 gL-1) additive, the surface roughness, thickness and COF decreased with decreasing duty cycle. . On the other hand, an increasing tendency of adhesion strength and the best wear resistance was observed when the duty cycle decreased from 80 to 25%. The best adhesion strength of 14.85 N and lower coefficient of friction was found for the PEO grown coating fabricated with 2.5 gL-1 Si3N4 nanoparticle additive at a duty cycle of 25%. We can conclude that the corrosion resistance and the adhesion strength of pure aluminum were influenced by the added borax and Si3N4 nanoparticle additive in the PEO electrolyte.

    Table of Contents 摘要 i Abstract ii Acknowledgment iv List of Figures viii List of Tables xii List of Abbreviations xiii Chapter 1 1 1. Introduction 1 1.1. Background of study 1 1.2. Objective of the study 2 Chapter 2 3 2. Literature Review 3 2.1. Plasma electrolytic oxidation 3 2.1.1. Corrosion resistance 5 2.1.1.1. Potentiodynamic polarization 5 2.1.1.2. Electrochemical impedance spectroscopy (EIS) 7 2.1.1.3. Factors affecting the corrosion resistance 10 2.1.1.3.1. Effect of electrolyte on corrosion resistance 10 2.1.1.3.2. Effect of electrical variables on corrosion resistance 11 2.1.1.3.3. Effect of treatment time on corrosion resistance 12 2.1.1.3.4. Effects of substrate on corrosion resistance 12 2.1.2. Adhesion strength 12 2.1.2.1. Factors affecting the adhesion strength 13 2.1.2.1.1. Effects of substrate on adhesion strength 13 2.1.2.1.2. Effects of duration of coating time on adhesion strength 13 2.1.2.1.3. Effects of electrolyte on adhesion strength 14 2.1.2.1.4. Effect of electrical variables on adhesion strength 15 Chapter 3 16 3. Experimental Methods 16 3.1. The Scanning Electron Microscope (SEM) 16 3.2. X-ray diffraction (XRD) 17 3.3. Field emission electron probe micro analyzer (FE-EPMA) 19 3.4. Potentiostat 22 3.5. Scratch test 24 3.6. Surface profilometer 26 Chapter 4 28 4. Effects of processing parameters on the corrosion performance of plasma electrolytic oxidation grown oxide on commercially pure aluminum 28 4.1. Introduction 28 4.2. Experimental procedures 30 4.2.1. Preparation of the samples 30 4.2.2. Sample characterization 31 4.3. Results and discussion 31 4.3.1. Voltage –time response of PEO coatings 31 4.3.2. Phase and composition analysis 34 4.3.3. Microstructure analysis of PEO coatings 36 4.3.4. PEO Layer thickness and weight gain 40 4.3.5. Surface roughness 42 4.3.6. The anti-corrosion performance evaluation of PEO coatings 42 4.3.6.1. Potentiodynamic polarization tests 42 4.3.6.2. Electrochemical Impedance Spectroscopy (EIS) test 45 4.4. Conclusions 49 Chapter 5 50 5. Corrosion performance of plasma electrolytic oxidation grown oxide coating on pure aluminum: Effect of borax concentration 50 5.1. Introduction 50 5.2. Materials and Methods of PEO coatings 52 5.2.1. Preparation of the PEO coatings 52 5.2.2. Characterization of PEO coatings 52 5.3. Results and discussion 54 5.3.1. Voltage –time curve characteristics of coatings 54 5.3.2. Phase and chemical composition analysis 56 5.3.3 Surface morphology analysis of PEO coatings 57 5.3.4. Corrosion resistance evaluation 61 5.4. Conclusions 68 Chapter 6 69 6. Adhesion property evaluation of plasma electrolytic oxidation treatment on aluminum: effect of Si3N4 69 6.1. Introduction 69 6.2. Experimental details 70 6.2.1. Sample Preparation 70 6.2.2. Characterization of PEO coatings 71 6.3. Results and discussion 72 6.3.1. Voltage-time responses 72 6.3.2. Structural and composition analysis 74 6.3.3. PEO coatings microstructure analysis 75 6.3.4. Analysis of adhesion properties and wear resistance 82 6.4. Conclusions 86 Chapter 7 87 7. Conclusions and future work 87 7.1. Conclusions 87 7.2. Future work 89 References 90

    References
    [1]. A. S. Warren, Developments and Challenges for Aluminum - A Boeing Perspective, Mater. Forum 28 (2004) 24-31.
    [2]. X. Lu, C. Blawert, M.L. Zheludkevich, K.U. Kainer, Insights into plasma electrolytic oxidation treatment with particle addition, Corros. Sci. 101 (2015) 201-207.
    [3]. J. Zhao, X. Xie, C. Zhang, Effect of the Graphene Oxide Additive on the Corrosion Resistance of the Plasma Electrolytic Oxidation Coating of the AZ31 Magnesium Alloy,Corros.Sci. 114 (2016) 146-155.
    [4]. K. Dong, Y. Song, D. Shan, E.-H. Han, Corrosion behavior of a self-sealing pore micro-arc oxidation film on AM60 magnesium alloy, Corros. Sci. 100 (2015) 275-283.
    [5]. M.P. Kamil, M. Kaseem, Y.G. Ko, Soft plasma electrolysis with complex ions for optimizing electrochemical performance, Sci. Rep. 7 (2017) 44458.
    [6]. Y. Mori, A. Koshi, J. Liao, Corrosion resistance of plasma electrolytic oxidation layer of a non-ignitable Mg–Al–Mn–Ca magnesium alloy, Corros. Sci. 104 (2016) 207-216.
    [7]. Z. Yao, Q. Xia, P. Ju, J. Wang, P. Su, D. Li, Z. Jiang, Investigation of absorptance and emissivity of thermal control coatings on Mg-Li alloys and OES analysis during PEO process, Sci. Rep. 6 (2016) 1-9.
    [8]. R. O. Hussein, X. Nie, D.O. North Wood, The application of plasma electrolytic oxidation (PEO) to the production of corrosion resistant coatings on magnesium alloys: A review, Corros. Mater. 38 (2013) 53-63.
    [9]. R.O. Hussein, D.O. Northwood, X. Nie, The effect of processing parameters and substrate composition on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloys, Surf. Coat. Technol. 237 (2013) 357-368.
    [10]. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol. 122 (1999) 73-93.
    [11]. J. Liang, P.B. Srinivasan, C. Blawert, M. Störmer, W. Dietzel, Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes, Electrochim. Acta 54 (2009) 3842-3850.
    [12]. X.N. Gu, N. Li, W.R. Zhou, Y.F. Zheng, X. Zhao, Q.Z. Cai, L. Ruan, Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg–Ca alloy, Acta Biomaterialia 7 (2011) 1880-1889.
    [13]. Y. Gu, C.-f. Chen, S. Bandopadhyay, C. Ning, Y. Zhang, Y. Guo, Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid, Appl. Surf. Sci. 258 (2012) 6116-6126.
    [14]. D.Y. Hwang, Y.M. Kim, D.-Y. Park, B. Yoo, D.H. Shin, Corrosion resistance of oxide layers formed on AZ91 Mg alloy in KMnO4 electrolyte by plasma electrolytic oxidation, Electrochim. Acta 54 (2009) 5479-5485.
    [15]. X.P. Zhang, Z.P. Zhao, F.M. Wu, Y.L. Wang, J. Wu, Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank’s solution, J. Mater. Sci. 42 (2007) 8523-8528.
    [16]. F. Jin, P.K. Chu, G. Xu, J. Zhao, D. Tang, H. Tong, Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes, Mater. Sci. Eng. A, 435-436 (2006) 123-126.
    [17]. H. Jiang, Z. Shao, B. Jing, Effect of Electrolyte Composition on Photocatalytic Activity and Corrosion Resistance of Micro-Arc Oxidation Coating on Pure Titanium, Procedia Earth Planet. Sci. 2 (2011) 156-161.
    [18]. X. Wu, X. Ding, W. Qin, W. He, Z. Jiang, Enhanced photo-catalytic activity of TiO2 films with doped La prepared by micro-plasma oxidation method, J. Hazard. Mater. 137 (2006) 192-197.
    [19]. Z. Yao, F. Jia, S. Tian, C. Li, Z. Jiang, X. Bai, Microporous Ni-Doped TiO2 film Photocatalyst by Plasma Electrolytic Oxidation, ACS Appl. Mater. Interfaces 2 (2010) 2617-2622.
    [20]. Y. Han, S.-H. Hong, K.W. Xu, Structure and in vitro bioactivity of titania-based films by micro-arc oxidation, Surf. Coat. Tecnol. 168 (2003) 249-258.
    [21]. P. Huang, K.-W. Xu, Y. Han, Preparation and apatite layer formation of plasma electrolytic oxidation film on titanium for biomedical application, Mater. Lett. 59 (2005) 185-189.
    [22]. Y. Xu, Z. Yao, F. Jia, Y. Wang, Z. Jiang, H. Bu, Preparation of PEO ceramic coating on Ti alloy and its high temperature oxidation resistance, Curr. Appl. Phys.10 (2010) 698-702.
    [23]. Z. Jiang, X. Zeng, Z. Yao, Preparation of micro-arc oxidation coatings on magnesium alloy and its thermal shock resistance property, Rare Met. 25 (2006) 270-273.
    [24]. T.W. Clyne, S.C. Troughton, A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals, Int. Mater. Rev. 64 (2019) 127-162.
    [25]. S. Adeleke, I. Sopyan, A.R. Bushroa, Hydroxyapaptite layer formation on titanium alloys surface using micro-arc oxidation, J. Eng. Appl.Sci. 10 (2015) 10101-10108.
    [26]. M. Stern, A method for determining corrosion rates from linear polarization data, Corros. 14(9) (1958) 60-64.
    [27]. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy; Theory, Experiment, and Applications, 2nd ed., Wiley Inter science Publications, 2005
    [28]. D. Loveday, P. Peterson, B. Rodgers, Evaluation of Organic Coatings with Electrochemical Impedance Spectroscopy. Part 1: Fundamentals of Electrochemical Impedance Spectroscopy. JCT Coatings Tech, (2004) 46-52
    [29]. R.O. Hussein, X. Nie, D.O. Northwood, An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing, Electrochim. Acta 112 (2013) 111-119.
    [30]. G. Kelvii Wei, A Review of Magnesium/Magnesium Alloys Corrosion, Recent Pat. Corros. Sci. 1 (2011) 72-90.
    [31]. K. Min Lee, Y. Gun Ko, D. Hyuk Shin, Incorporation of multi-walled carbon nanotubes into the oxide layer on a 7075 Al alloy coated by plasma electrolytic oxidation: Coating structure and corrosion properties, Curr. Appl. Phys. 11 (2011) 555-559.
    [32]. A. Bahramian, K. Raeissi, A. Hakimizad, An investigation of the characteristics of Al2O3/TiO2 PEO nanocomposite coating, Appl. Surf. Sci. 351 (2015) 13-26.
    [33]. M. Kaseem, Y. Hwan Lee, Y. Gun Ko, Incorporation of MoO2 and ZrO2 particles into the oxide film formed on 7075 Al alloy via micro-arc oxidation, Mater. Lett. 183 (2016) 260-263.
    [34]. D.Y. Hwang, Y.M. Kim, D.H. Shin, Corrosion Resistance of Plasma-Anodized AZ91 Mg Alloy in the Electrolyte with/without Potassium Fluoride, Mater. Trans. 50 (2009) 671-678.
    [35]. J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, T. Xu, Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy, Appl. Surf. Sci. 252 (2005) 345-351.
    [36]. B. Kazanski, A. Kossenko, M. Zinigrad, A. Lugovskoy, Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy, Appl. Surf. Sci. 287 (2013) 461-466.
    [37]. A. Němcová, P. Skeldon, G.E. Thompson, B. Pacal, Effect of fluoride on plasma electrolytic oxidation of AZ61 magnesium alloy, Surf. Coat.Technol.232 (2013) 827-838.
    [38]. J. Zhang, Y. Gu, Y. Guo, C. Ning, Electrochemical behavior of biocompatible AZ31 magnesium alloy in simulated body fluid, J. Mater. Sci. 47 (2012) 5197-5204.
    [39]. Y. Ma, X. Nie, D.O. Northwood, H. Hu, Corrosion and erosion properties of silicate and phosphate coatings on magnesium, Thin Solid Films 469-470 (2004) 472-477.
    [40]. L. Rama Krishna, G. Poshal, G. Sundararajan, Influence of Electrolyte Chemistry on Morphology and Corrosion Resistance of Micro Arc Oxidation Coatings Deposited on Magnesium, Metall. Mater. Trans. A 41 (2010) 3499-3508.
    [41]. D. Sreekanth, N. Rameshbabu, K. Venkateswarlu, Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation, Ceram. Int. 38 (2012) 4607-4615.
    [42]. D. Sreekanth, N. Rameshbabu, K. Venkateswarlu, C. Subrahmanyam, L. Rama Krishna, K. Prasad Rao, Effect of K2TiF6 and Na2B4O7 as electrolyte additives on pore morphology and corrosion properties of plasma electrolytic oxidation coatings on ZM21 magnesium alloy, Surf. Coat. Technol. 222 (2013) 31-37.
    [43]. S. Verdier, M. Boinet, S. Maximovitch, F. Dalard, Formation, structure and composition of anodic films on AM60 magnesium alloy obtained by DC plasma anodising, Corros. Sci. 47 (2005) 1429-1444.
    [44]. D. Wu, X. Liu, K. Lu, Y. Zhang, H. Wang, Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface, Appl. Surf. Sci. 255 (2009) 7115-7120.
    [45]. R.F. Zhang, G.Y. Xiong, C.Y. Hu, Comparison of coating properties obtained by MAO on magnesium alloys in silicate and phytic acid electrolytes, Curr. Appl.Phys. 10 (2010) 255-259.
    [46]. R.F. Zhang, S.F. Zhang, N. Yang, L.J. Yao, F.X. He, Y.P. Zhou, X. Xu, L. Chang, S.J. Bai, Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys, J. Alloys Compd. 539 (2012) 249-255.
    [47]. R.O. Hussein, D.O. Northwood, X. Nie, The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy, J.Alloys Compd. 541 (2012) 41-48.
    [48]. R.O. Hussein, P. Zhang, X. Nie, Y. Xia, D.O. Northwood, The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62, Surf. Coat. Technol. 206 (2011) 1990-1997.
    [49]. A.V. Timoshenko, Y.V. Magurova, Investigation of plasma electrolytic oxidation processes of magnesium alloy MA2-1 under pulse polarisation modes, Surf. Coat. Technol. 199 (2005) 135-140.
    [50]. S. Wang, Y. Xia, L. Liu, N. Si, Preparation and performance of MAO coatings obtained on AZ91D Mg alloy under unipolar and bipolar modes in a novel dual electrolyte, Ceram. Int. 40 (2014) 93-99.
    [51]. B. Zou, G.-h. LÜ, G.-l. Zhang, Y.-y. Tian, Effect of current frequency on properties of coating formed by microarc oxidation on AZ91D magnesium alloy, Trans. Nonferrous Met. Soc. China, 25 (2015) 1500-1505.
    [52]. I.J. Hwang, D.Y. Hwang, Y.G. Ko, D.H. Shin, Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation, Surf. Coat. Technol. 206 (2012) 3360-3365.
    [53]. G.-H. Lv, H. Chen, W.-C. Gu, L. Li, E.-W. Niu, X.-H. Zhang, S.-Z. Yang, Effects of current frequency on the structural characteristics and corrosion property of ceramic coatings formed on magnesium alloy by PEO technology, J. Mater. Process. Technol. 208 (2008) 9-13.
    [54]. Y.H. Gu, C.f. Chen, S. Bandopadhyay, C.Y. Ning, Y.J. Guo, Residual stress in pulsed dc microarc oxidation treated AZ31 alloy, Surf. Eng.28 (2012) 498-502.
    [55]. P. Su, X. Wu, Z. Jiang, Y. Guo, Effects of Working Frequency on the Structure and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings Formed on a ZK60 Mg Alloy, Int. J.Appl. Ceram. Technol. 8 (2011) 112-119.
    [56]. Y. Wang, J. Wang, J. Zhang, Z. Zhang, Characteristics of anodic coatings oxidized to different voltage on AZ91D Mg alloy by micro-arc oxidization technique, Mater. Corros. 56 (2005) 88-92.
    [57]. Y.-j. Guan, Y. Xia, Correlation between discharging property and coatings microstructure during plasma electrolytic oxidation, Trans. Nonferrous Met. Soc. China 16 (2006) 1097-1102.
    [58]. J. Ma, Y.S. Yang, X.C. Wang, J. Zhang, S. Liu, X.B. Yi, Effect of Impulse Voltage on Microstructure and Corrosion Resistance of Microarc Oxidation Coatings on AZ80 Magnesium Alloy, Key Eng. Mater. 575-576 (2014) 418-422.
    [59]. S. Durdu, M. Usta, Characterization and mechanical properties of coatings on magnesium by micro arc oxidation, Appl. Surf. Sci. 261 (2012) 774-782.
    [60]. L.-r. Chang, F.-h. Cao, J.-s. Cai, W.-j. Liu, Z. Zhang, J.-q. Zhang, Influence of electric parameters on MAO of AZ91D magnesium alloy using alternative square-wave power source, Transactions of Nonferrous Met. Soc. China 21 (2011) 307-316.
    [61]. X.J. Cui, X.Z. Lin, C.H. Liu, R.S. Yang, M.T. Li, Microstructure and Properties of MAO Coatings for AZ91D Magnesium Alloy in Varies Work Mode, Mater. Sci. Forum 747-748 (2013) 178-183.
    [62]. J. Chen, S. Wang, C. Xu, X. Wang, X. Feng, Separation of Americium from Lanthanides by Purified Cyanex 301 Countercurrent Extraction in Miniature Centrifugal Contactors, Procedia Chem. 7 (2012) 172-177.
    [63]. H.M. Wang, Z.H. Chen, L.L. Li, Corrosion resistance and microstructure characteristics of plasma electrolytic oxidation coatings formed on AZ31 magnesium alloy, Surf. Eng. 26 (2010) 385-391.
    [64]. C.E. Barchiche, E. Rocca, C. Juers, J. Hazan, J. Steinmetz, Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods, Electrochim. Acta 53 (2007) 417-425.
    [65]. P. Wang, D.-x. Liu, J.-p. Li, Y.-c. Guo, Z. Yang, Growth process and corrosion resistance of micro-arc oxidation coating on Mg-Zn-Gd magnesium alloys, Trans. Nonferrous Met. Soc. China, 20 (2010) 2198-2203.
    [66]. G.-H. Lv, H. Chen, L. Li, E.-W. Niu, H. Pang, B. Zou, S.-Z. Yang, Investigation of plasma electrolytic oxidation process on AZ91D magnesium alloy, Curr. Appl. Phys. 9 (2009) 126-130.
    [67]. L.R. Krishna, G. Poshal, A. Jyothirmayi, G. Sundararajan, Relative hardness and corrosion behavior of micro arc oxidation coatings deposited on binary and ternary magnesium alloys, Mater. Des. 77 (2015) 6-14.
    [68]. E. Cakmak, K.C. Tekin, U. Malayoglu, S. Shrestha, The effect of substrate composition on the electrochemical and mechanical properties of PEO coatings on Mg alloys, Surf. Coat. Technol. 204 (2010) 1305-1313.
    [69]. Y.L. Song, Y.H. Liu, S.R. Yu, X.Y. Zhu, Q. Wang, Plasma electrolytic oxidation coating on AZ91 magnesium alloy modified by neodymium and its corrosion resistance, Appl. Surf. Sci. 254 (2008) 3014-3020.
    [70]. B. Yoo, K.R. Shin, D.Y. Hwang, D.H. Lee, D.H. Shin, Effect of surface roughness on leakage current and corrosion resistance of oxide layer on AZ91 Mg alloy prepared by plasma electrolytic oxidation, Appl. Surf. Sci. 256 (2010) 6667-6672.
    [71]. P. Shi, W.F. Ng, M.H. Wong, F.T. Cheng, Improvement of corrosion resistance of pure magnesium in Hanks’ solution by microarc oxidation with sol–gel TiO2 sealing, J. Alloys Compd. 469 (2009) 286-292.
    [72]. Z.G. Huan, M.A. Leeflang, J. Zhou, J. Duszczyk, ZK30-bioactive glass composites for orthopedic applications: A comparative study on fabrication method and characteristics, Mater. Sci. Eng., B 176 (2011) 1644-1652.
    [73]. H.X. Li, V.S. Rudnev, X.H. Zheng, T.P. Yarovaya, R.G. Song, Characterization of Al2O3 ceramic coatings on 6063 aluminum alloy prepared in borate electrolytes by micro-arc oxidation, J. Alloys Compd. 462 (2008) 99-102.
    [74]. K. Wu, Y.Q. Wang, M.Y. Zheng, Effects of microarc oxidation surface treatment on the mechanical properties of Mg alloy and Mg matrix composites, Mater. Sci. Eng., A 447 (2007) 227-232.
    [75]. Y. Wang, T. Lei, B. Jiang, L. Guo, Growth, microstructure and mechanical properties of microarc oxidation coatings on titanium alloy in phosphate-containing solution, Appl. Surf. Sci. 233 (2004) 258-267.
    [76]. H. Guo, M. An, S. Xu, H. Huo, Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy, Mater. Lett. 60 (2006) 1538-1541.
    [77]. H. Ollendorf, D. Schneider, A Comparative Study of Adhesion Test Methods for Hard Coatings, Surf. Coat. Technol. 113 (1999) 86-102.
    [78]. J. Valli, A review of adhesion test methods for thin hard coatings, J. Vac. Sci. Technol. A 4 (1986) 3007-3014.
    [79]. Z. Chen, K. Zhou, X. Lu, Y.C. Lam, A review on the mechanical methods for evaluating coating adhesion, Acta Mech. 225 (2014) 431-452.
    [80]. A. Kazek-Kęsik, D. Łastówka, A. Donesz-Sikorska, G. Dercz, W. Simka, Multilayer Bioactive Coatings Formed on the Vanadium-Free Titanium Alloys via PEO and EPD Processes, J. Electrochem. Soc. 162(2015) D589-D597.
    [81]. S. Durdu, S. Bayramoğlu, A. Demirtaş, M. Usta, A.H. Üçışık, Characterization of AZ31 Mg Alloy coated by plasma electrolytic oxidation, Vac. 88 (2013) 130-133.
    [82]. X. Nie, A. Leyland, H.W. Song, A.L. Yerokhin, S.J. Dowey, A. Matthews, Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys, Surf. Coat.Technol. 116-119 (1999) 1055-1060.
    [83]. S. Durdu, M. Usta, The tribological properties of bioceramic coatings produced on Ti6Al4V alloy by plasma electrolytic oxidation, Ceram. Int. 40 (2014)3627-3635.
    [84]. Y.K. Pan, C.Z. Chen, D.G. Wang, T.G. Zhao, Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg–Zn–Zr magnesium alloy, Colloids Surf., B 109 (2013) 1-9.
    [85]. A. Polat, M. Makaraci, M. Usta, Influence of sodium silicate concentration on structural and tribological properties of microarc oxidation coatings on 2017A aluminum alloy substrate, J. Alloys Compd. 504 (2010) 519-526.
    [86]. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti–6Al–4V alloy, Surf. Coat. Technol. 130 (2000) 195-206.
    [87]. S.A. Adeleke, A. Bushroa, M. Kusumawan Herliansyah, I. Sopyan, W. Jefrey Basirun, M. Ladan, Preparation, scratch adhesion and anti-corrosion performance of TiO2-MgO-BHA coating on Ti6Al4V implant by plasma electrolytic oxidation technique, J. Adhes. Sci. Technol. 32 (2018) 91-102.
    [88]. A. Mandelli, M. Bestetti, A. Da Forno, N. Lecis, S.P. Trasatti, M. Trueba, A composite coating for corrosion protection of AM60B magnesium alloy, Surf. Coat. Technol. 205 (2011) 4459-4465.
    [89]. Y.K. Pan, C.Z. Chen, D.G. Wang, X. Yu, Z.Q. Lin, Influence of additives on microstructure and property of microarc oxidized Mg–Si–O coatings, Ceram. Int. 38 (2012) 5527-5533.
    [90]. H.-x. Li, R.-g. Song, Z.-g. Ji, Effects of nano-additive TiO2 on performance of micro-arc oxidation coatings formed on 6063 aluminum alloy, Trans. Nonferrous Met. Soc. China 23 (2013) 406-411.
    [91]. S. cheng, D. Wei, y. Zhou, H. Guo, Characterization and properties of microarc oxidized coatings containing Si, Ca and Na on titanium, Ceram. Int. 37 (2011) 1761-1768.
    [92]. T. Arunnellaiappan, N. Kishore Babu, L. Rama Krishna, N. Rameshbabu, Influence of frequency and duty cycle on microstructure of plasma electrolytic oxidized AA7075 and the correlation to its corrosion behavior, Surf. Coat. Technol. 280 (2015) 136-147.
    [93]. H. Allachi, F.Chaouket, K.Draoui, Corrosion inhibition of AA6060 aluminium alloy by lanthanide salts in chloride solution, J. Alloys compd. 475 (2009) 300-303.
    [94]. S. Chakraborty, S.Banerjee, I.G.Sharma, B Paul,. A.K.Suri, Studies on the synthesis and characterization of a molybdenum-based alloy, J. Alloys Compd. 477 (2009) 256-261.
    [95]. M. Joshi, A. Bhattacharyya, Characterization techniques for nanotechnology applications in textiles, Indian j. fibre Text. 33(2008) 304-317.
    [96]. H. P. Klug, L. E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials. 2nd ed. Wiley, New York, 1974.
    [97]. S. J. B. Reed, Electron Microprobe Analysis (2nd Ed.), Cambridge University Press. 1993.
    [98]. Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications. New York: John Wiley & Sons, 2nd Edition, 2000.
    [99]. S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, I. M. Imshinetskiy, A. V. Samokhin, Yu. V. Tsvetkov, Fabrication of Coatings on the Surface of Magnesium Alloy by Plasma Electrolytic Oxidation Using ZrO 2 and SiO 2 Nanoparticles, Journal of Nanomaterials Volume 2015 (2015), 12
    [100]. M. R. Amirzada, Optimization in the Technological Steps for the Fabrication of Large Area Micromirror Arrays, Doctor of Engineering, Faculty of Electrical Engineering and Informatics, University of Kassel, 2014.
    [101]. W. Xue, X. Wu, X. Li, H. Tian, Anti-corrosion film on 2024/SiC aluminum matrix composite fabricated by microarc oxidation in silicate electrolyte, J. Alloys Compd. 425 (2006) 302-306.
    [102]. J. Dean, T. Gu, T.W. Clyne, Evaluation of residual stress levels in plasma electrolytic oxidation coatings using a curvature method, Surf. Coat. Technol. 269 (2015) 47-53.
    [103]. A.L. Yerokhin, V.V Lyubimov, R.V. Ashitkov, Phase formation in ceramics coatings during plasma electrolytic oxidation of aluminum alloys, Ceram. Int. 24 (1998)1-6.
    [104]. S. S. Byeon, K. Wang, Y. J. Seo, Y. G. Jung, B. H. Koo, Structural properties of the oxide coatings prepared by electrolyte plasma process on the Al 2021 alloy in various nitrogen solutions, Ceram. Int. 38S (2012) S665–S668.
    [105]. S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebrukhov, P.S. Gordienko, S. Iwatsubo, A.Matsui, Composition and adhesion of protective coatings on aluminum, Surf. Coat. Technol. 145 (2001) 146-151.
    [106]. X. Yang, L. Chen, X. Jin, J. Du, W. Xue, Influence of temperature on tribological properties of microarc oxidation coating on 7075 aluminium alloy at 25 °C –300 °C, Ceram. Int. 45 (2019) 12312 - 1218.
    [107]. K. Wang, S. S. Byeon, Y. G. Jung, B. H. Koo, Effect of the nitrogen inducing agents on the corrosion behavior of the oxide coatings prepared by electrolytic plasma processing on the Al 2021 alloy, Ceram. Int. 38S (2012) S669–S672.
    [108]. U. Malayoglu, K. C. Tekin, U. Malayoglu, S.Shrestha, An investigation into the mechanical and tribological properties of plasmaelectrolytic oxidation and hard-anodized coatings on 6082 aluminum alloy, Mater. Sci. Eng. A 528 (2011) 7451– 746
    [109]. H. Sharifi, M. Aliofkhazraei, G.B. Darband, S. Shrestha, A review on adhesion strength of PEO coatings by scratch test method, Surf. Rev. Lett. 25 (2017) 1830004.
    [110]. A. Kuhn, Plasma anodizing of magnesium alloys, Met. Finish. 101(2003) 44-50.
    [111]. X. Nie, E. Meletis, J. C. Jiang, A. Leyland, A. Yerokhin, A. Matthews, Abrasive Wear/Corrosion Properties and TEM Analysis of Al2O3 Coatings Fabricated Using Plasma Electrolysis, Surf. Coat. Technol. 149 (2002) 245-251.
    [112]. M. Shokouhfar, C. Dehghanian, A. Baradaran, Preparation of ceramic coating on Ti substrate by Plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance, Appl. Surf. Sci. 257 (2011) 2617-2624.
    [113]. Y. Cheng, E. Matykina, R. Arrabal, P. Skeldon, G.E. Thompson, Plasma electrolytic oxidation and corrosion protection of Zircaloy-4, Surf. Coat. Technol. 206 (2012) 3230-3239.
    [114]. Z.Yang, X.R. Zhang, Y.K.Wu, G.R.Wu, D.D.Wang, X.T. Liu, H.P. Han, Y. Su, D.J. Shen, The correlation between the Na2SiO3·9H2O concentrations and the characteristics of plasma electrolytic oxidation ceramic coatings, Ceram. Int. 45 (2019) 19388-19394.
    [115]. A. Ghasemi, N. Scharnagl, C. Blawert, W. Dietzel, K.U. Kainer, Influence of electrolyte constituents on corrosion behaviour of PEO coatings on magnesium alloys, Surf. Eng. 26 (2010) 321-327.
    [116]. Z.P. Yao, D.L. Wang, Q.X. Xia, Y.J. Zhang, Z.H.Jiang, F.P.Wang, Effect of PEO power modes on structure and corrosion resistance of ceramic coatings on AZ91D Mg alloy, Surf. Eng. 28 (2012) 96-101.
    [117]. S. D. N. Rameshbabu, D. Venkateswarlu, S. Challapalli, L.Krishna, P. Kalvala, Effect of K2TiF6 and Na2B4O7 as electrolyte additives on pore morphology and corrosion properties of plasma electrolytic oxidation coatings on ZM21 magnesium alloy, Surf. Coat. Technol. 222 (2013) 31-37.
    [118]. Zh. I. Bespalova, I. N. Panenko Impact of Electrolyte Composition and Modes of Operation on the Structure, Morphology, and Properties of Oxide Ceramic Coatings Fabricated by Microarc Oxidation, Surf. Eng. Appl. Electrochem. 55 (2019) 38–45
    [119]. T.S.N. Sankara Narayanan, I.S. Park, M.H. Lee, Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges, Prog. Mater. Sci. 60 (2014) 1-71.
    [120]. X. Li, B. Luan, Discovery of Al2O3 particles incorporation mechanism in plasma electrolytic oxidation of AM60B magnesium alloy, Mater.Lett. 86 (2012) 88–91.
    [121]. Y. Wang, D. Wei, J. Yu, S. Di, Effects of Al2O3 Nano-additive on Performance of Micro-arc Oxidation Coatings Formed on AZ91D Mg Alloy, J. Mater. Sci. Technol. 30 (2014) 984-990.
    [122]. M. Toorani Farani, M. Aliofkhazraei, A. Sabour Rouh Aghdam, Microstructural, protective, inhibitory and semiconducting properties of PEO coatings containing CeO2 nanoparticles formed on AZ31 Mg alloy, Surf. Coat.Technol. 352 (2018) 561-580.
    [123]. J. Cai, F. Cao, L. Chang, J. Zheng, J. Zhang, C. Cao, The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film, Appl. Surf. Sci. 257 (2011) 3804-3811.
    [124]. M. Daroonparvar, M.A.M. Yajid, N.M. Yusof, H.R. Bakhsheshi-Rad, Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1%Ca alloy formed in aluminate electrolyte containing titania nano-additives, J. Alloys Compd. 688 (2016) 841-857.
    [125]. J. Liang, L. Hu, J. Hao, Preparation and Characterization of Oxide Films Containing Crystalline TiO2 on Magnesium Alloy by Plasma Electrolytic Oxidation, Electrochim. Acta. 52 (2007) 4836-4840.
    [126]. X. Lu, C. Blawert, Y. Huang, H. Ovri, M.L. K. Zheludkevich, Kainer, Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles, Electrochim. Acta. 187 (2015) 20-33.
    [127]. R. Arrabal, E. Matykina, F. Viejo, P.Skeldon, G. Thompson, M. Merino, AC Plasma Electrolytic Oxidation of Magnesium with Zirconia Nanoparticles, Appl. Surf. Sci. 254 (2008) 6937-6942.
    [128]. J. Liang, P. Bala Srinivasan, C. Blawert, W. Dietzel, Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation, Corros. Sci. 51 (2009) 2483-2492.
    [129]. B. Han, Plasma-Electrolytic-Oxidation Coating containing Y2O3 Nanoparticles on AZ91 Magnesium Alloy, Int. J. Electrochem. Sci. 13 (2018) 5681-5697.
    [130]. Z. Krstic, V.D. Krstic, Silicon nitride: the engineering material of the future, J. Mater. Sci. 47 (2012) 535–552.
    [131]. B. S. Lou, Y. Y. Lin, C.M. Tseng, Y.C. Lu, J. G. Duh, J. W. Lee, Plasma electrolytic oxidation coatings on AZ31 magnesium alloys with Si3N4 nanoparticle additives, Surf. Coat. Technol. 332 (2017) 358–367.
    [132]. X. Lu, C. Blawert, N. Scharnagl, K.U. Kainer, Influence of incorporating Si3N4 particles into the oxide layer produced by plasma electrolytic oxidation on AM50 Mg alloy on coating morphology and corrosion properties, J. Magnes. Alloys 1 (2013) 267-274.
    [133]. D. Qin, G. Xu, Y. Yang, S. Chen, Multiphase Ceramic Coatings with High Hardness and Wear Resistance on 5052 Aluminum Alloy by a Microarc Oxidation Method, ACS Sustain. Chem. Eng. 6 (2018) 2431-2437.
    [134]. V. Dehnavi, B.L. Luan, X.Y. Liu, D.W. Shoesmith, S. Rohani, Correlation between plasma electrolytic oxidation treatment stages and coating microstructure on aluminum under unipolar pulsed DC mode, Surf. Coat. Technol. 269 (2015) 91-99.
    [135]. V. Dehnavi, X.Y. Liu, B.L. Luan, D.W. Shoesmith, S. Rohani, Phase transformation in plasma electrolytic oxidation coatings on 6061 aluminum alloy, Surf. Coat. Technol. 251 (2014) 106-114.
    [136]. M.I.F. Macêdo, C.A. Bertran, C.C. Osawa, Kinetics of the γ → α-alumina phase transformation by quantitative X-ray diffraction, J. Mater. Sci. 42 (2007) 2830-2836.
    [137]. C.K. Loong, J.W. Richardson, M. Ozawa, Structural phase transformations of rare-earth modified transition alumina to corundum, J. Alloys Compd. 250 (1997) 356-359.
    [138]. Y. Yurekturk, F. Muhaffel, M. Baydogan, Characterization of micro arc oxidized 6082 aluminum alloy in an electrolyte containing carbon nanotubes, Surf. Coat. Technol. 269 (2015) 83-90.
    [139]. R.H.U. Khan, A. Yerokhin, X. Li, H. Dong, A. Matthews, Surface characterisation of DC plasma electrolytic oxidation treated 6082 aluminium alloy: Effect of current density and electrolyte concentration, Surf. Coat. Technol. 205 (2010)1679-1688.
    [140]. D.S. Doolabi, M. Ehteshamzadeh, S.M.M. Mirhosseini, Effect of NaOH on the Structure and Corrosion Performance of Alumina and Silica PEO Coatings on Aluminum, J. Mater. Eng. Perform. 21 (2012) 2195-2202.
    [141]. A. Venugopal, J. Srinath, L. Rama Krishna, P. Ramesh Narayanan, S.C. Sharma, P.V. Venkitakrishnan, Corrosion and nanomechanical behaviors of plasma electrolytic oxidation coated AA7020-T6 aluminum alloy, Mater. Sci. Eng. A 660 (2016) 39–46
    [142]. V. Dehnavi, B. Luan, D. Shoesmith, X.Y. Liu, S. Rohani, Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior, Surf. Coat. Technol. 226 (2013) 100–107.
    [143]. Y. L. Cheng, T.W. Qin, L.L. Li, H.M. Wang, Z. Zhang, Comparison of corrosion resistance of microarc oxidation coatings prepared with different electrolyte concentrations on AM60 magnesium alloy, Corros. Eng. 46 (2011) 17-23.
    [144]. U. Malayoglu, K. Tekin, S. Shrestha, Influence of post-treatment on the corrosion resistance of PEO coated AM50B and AM60B Mg alloys, Surf. Coat. Technol. 205 (2010) 1793-1798.
    [145]. Ç.A. Demirba, A. Ayday, The influence of Nano-TiO2 and Nano-Al2O3 Particles in Silicate Based Electrolytes on Microstructure and Mechanical Properties of Micro Arc Coated Ti6Al4V Alloy, Mater. Res. 21 (2018) 1-5.
    [146]. X. Q. Wu, F. Q. Xie, Z. C. Hu, L. Wang, Effects of additives on corrosion and wear resistance of micro-arc oxidation coatings on TiAl alloy, Trans. Nonferrous Met. Soc. China 20 (2010) 1032-1036.
    [147]. B. Li, W. Zhang, Microstructural, surface and electrochemical properties of pulse electrodeposited Ni–W/Si3N4 nanocomposite coating, Ceram. Int. 44 (2018) 19907-19918.
    [148]. W. Xue, Q. Jin, Q. Zhu, M. Hua, Y. Ma, Anti-corrosion microarc oxidation coatings on SiC P/AZ31 magnesium matrix composite, J. Alloys Compd. 482 (2009) 208-212.
    [149]. V. Dehnavi, D.W. Shoesmith, B.L. Luan, M. Yari, X.Y. Liu, S. Rohani, Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy – The effect of the PEO process stage, Mater. Chem. Phys. 161 (2015) 49-58.
    [150]. C. Gu, L. Wang, X. Hu, W. Dong, H. DaCosta, Borate’s effects on coatings by PEO on AZ91D alloy, Surf. Eng. 33 (2017) 773-778.
    [151]. P.I. Butyagin, Y.V. Khokhryakov, A.I. Mamaev, Microplasma systems for creating coatings on aluminium alloys, Mater. Lett. 57 (2003) 1748-1751.
    [152]. K. Venkateswarlu, N. Rameshbabu, D. Sreekanth, A.C. Bose, V. Muthupandi, S. Subramanian, Fabrication and characterization of micro-arc oxidized fluoride containing titania films on Cp Ti, Ceram. Int. 39 (2013) 801-812.
    [153]. L. Shi, Y. Xu, K. Li, Z. Yao, S. Wu, Effect of Additives on Structure and Corrosion Resistance of ceramic Coatings on Mg-Li Alloy by Micro-Arc Oxidation, Curr. Appl. Phys. 10 (2010) 719-723.
    [154]. S. Yagi, K. Kuwabara, Y. Fukuta, K. Kubota, E. Matsubara, Formation of self-repairing anodized film on ACM522 magnesium alloy by plasma electrolytic oxidation, Corros. Sci. 73 (2013) 188–195.
    [155]. M.J. Shen, X. Wang, M.F. Zhang, High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate–borax, Appl. Surf. Sci. 259 (2012) 362–366.
    [156]. R.F. Zhang, S.F. Zhang, Y.L. Shen, L.H. Zhang, T.Z. Liu, Y.Q. Zhang, S.B. Guo, Influence of sodium borate concentration on properties of anodic coatings obtained by micro arc oxidation on magnesium alloys, Appl. Surf. Sci. 258 (2012) 6602-6610.
    [157]. M. Kaseem, H.W. Yang, Y.G. Ko, Toward a nearly defect-free coating via high-energy plasma sparks, Sci. Rep. 7 (2017) 2378.
    [158]. G.H. Lv, W.C. Gu, H .Chen, L. Li, E.W. Niu, S.Z Yang,. Microstructure and Corrosion Performance of Oxide Coatings on Aluminium by Plasma Electrolytic Oxidation in Silicate and Phosphate Electrolytes, Chin. Phys. Lett. 23 (2006) 3331-3333.
    [159]. L. Shao, H. Li, B. Jiang, C. Liu, X. Gu, D. Chen, A Comparative Study of Corrosion Behavior of Hard Anodized and Micro-Arc Oxidation Coatings on 7050 Aluminum Alloy, Metals. 8 (2018) 165.
    [160]. Z. Wang, L. Wu, W. Cai, A. Shan, Z. Jiang, Effects of fluoride on the structure and properties of microarc oxidation coating on aluminium alloy, J. Alloys Compd. 505 (2010)188-193.
    [161]. J. Bisquert. A. Compte. Theory of the electrochemical impedance of anomalous diffusion, J. Electroanal. Chem. 499 (2001) 112–120.
    [162]. J.J. Suay, E. Gimenez, T, Rodriguez, K. Habbib, J.J. Saura, Characterization of anodized and sealed aluminium by EIS, Corro. Sci. 45 (2003) 611–624.
    [163]. Z. Yao, Z. Jiang, S. Xin, S. Xuetong, X. Wu, Electrochemical Impedance Spectroscopy of Ceramic Coatings on Ti–6Al–4V by Micro-Plasma Oxidation, Electrochim. Acta. 50 (2005) 3273-3279.
    [164]. C. Liu, Q. Bi, A. Leyland, A. Matthews, An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data modelling, Corro. SCi. 45 (2003) 1243-1256.
    [165]. M. Shokouhfar, C. Dehghanian, M. Montazeri, A. Baradaran, Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II, Appl. Surf. Sci. 258 (2012) 2416-2423.
    [166]. A. Němcová, P. Skeldon, G.E. Thompson, S. Morse, J. Čížek, B. Pacal, Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy, Corros. Sci. 82 (2014) 58-66.
    [167]. A.S. Gnedenkov, S.L. Sinebryukhov, S. D.V. Mashtalyar, V. Gnedenkov, Localized corrosion of the Mg alloys with inhibitor-containing coatings: SVET and SIET studies, Corros. Sci. 102 (2016) 269-278.
    [168]. S.V. Gnedenkov, S.L. Sinebryukhov, D.V. Mashtalyar, I.M. Imshinetskiy, A.S. Gnedenkov, A.V. Samokhin, Composite coatings obtained by plasma electrolytic oxidation on magnesium alloy MA8, Vacuum 120 (2015) 107-114.
    [169]. V. Shoaei-Rad, M.R. Bayati, H.R. Zargar, J. Javadpour, F. Golestani-Fard, In situ growth of ZrO2–Al2O3 nano-crystalline ceramic coatings via micro arc oxidation of aluminum substrates, Mater. Res. Bull 47 (2012) 1494-1499.
    [170]. W. Zhu, Z. Zhang, B. Gu, J. Sun, L. Zhu, Biological Activity and Antibacterial Property of Nano-structured TiO2 Coating Incorporated with Cu Prepared by Micro-arc Oxidation, J. Mater. Sci. 29 (2013) 237-244.
    [171]. S.V. Gnedenkov, S.L. Sinebryukhov, D.V. Mashtalyar, I.M. Imshinetskiy, Composite fluoropolymer coatings on Mg alloys formed by plasma electrolytic oxidation in combination with electrophoretic deposition, Surf. Coat. Technol. 283 (2015) 347-352.
    [172]. P. Srinivasan, J. Liang, C. Blawert, W. Dietzel, Dry Sliding Wear Behaviour of Magnesium Oxide and Zirconium Oxide Plasma Electrolytic Oxidation Coated Magnesium Alloy, Appl. Surf. Sci. 256 (2010) 3265−3273.
    [173]. G. A. Mengesha, J.P. Chu, B.S. Lou, J.W. Lee, Effects of Processing Parameters on the Corrosion Performance of Plasma Electrolytic Oxidation Grown Oxide on Commercially Pure Aluminum, Metals 10 (2020) 394.
    [174]. Z. Wu, Y. Xia, G. Li, F. Xu, Structure and mechanical properties of ceramic coatings fabricated by plasma electrolytic oxidation on aluminized steel, Appl. Surf. Sci. 253 (2007) 8398-8403.
    [175]. H. Wu, J. Wang, B. Long, B. Long, Z. Jin, W. Naidan, Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminum alloy, Appl. Surf. Sci. 252 (2005) 1545-1552.
    [176]. R. O. Hussein, X. Nie, D. Northwood, A. Yerokhin, A. Matthews, Spectroscopic study of electrolytic plasma and discharging behavior during the plasma electrolytic oxidation (PEO) process, J. Phys. D. Appl. Phys. 43 (2010)105203-105216.
    [177]. G. Lv, W. Gu, H. Chen, W. Feng, M.L. Khosa, L. Li, Characteristics of ceramic coatings on aluminum by plasma electrolytic oxidation in silicate and phosphate electrolyte, Appl. Surf. Sci. 253 (2006) 2947-2952.
    [178]. Z. Yao, Z. Jiang, X. Zhang, Effect of Na2SO4 on Structure and Corrosion Resistance of Ceramics Coatings Containing Zirconium Oxide on Ti–6Al–4V Alloy, J. Am. Ceram. Soc. 89 (2006) 2929-2932.
    [179]. W. Xue, Z. Deng, Y. Lai, R. Chen, Analysis of Phase Distribution for Ceramic Coatings Formed by Microarc Oxidation on Aluminum Alloy, J. Am. Ceram. Soc. 81 (1998) 1365-1368.
    [180]. R.O. Hussein, X. Nie, D.O. Northwood, A spectroscopic and microstructural study of oxide coatings produced on a Ti–6Al–4V alloy by plasma electrolytic oxidation, Mater. Chem. Phys. 134 (2012) 484-492.
    [181]. R.O. Hussein, X. Nie, D.O. Northwood, Influence of process parameters on electrolytic plasma discharging behavior and aluminum oxide coating microstructure, Surf. Coat. Technol. 205 (2010) 1659-67.
    [182]. K. Wang, B.H. Koo, C.G. Lee, Y.J. Kim, S.H. Lee, E. Byon, Effects of electrolytes variation on the formation of oxide layers of 6061 Al alloys by plasma electrolytic oxidation, Trans. Nonferrous. Met. Soc. China 19 (2009) 866-870.
    [183]. W. Xue, C. Wang, R. Chen, Z. Deng, Structure and properties characterization of ceramic coatings produced on Ti–6Al–4V alloy by microarc oxidation in aluminate solution, Mater. Let. 52 (2002) 435-441.
    [184]. J. Tian, Z. Luo, S. Qi, X. Sun, Structure and antiwear behavior of micro-arc oxidized coatings on aluminum alloy, Surf. Coat. Technol. 154 (2002) 1-7.
    [185]. Y. Han, S.H. Hong, K.W. Xu, Porous nanocrystalline titania films by plasma electrolytic oxidation, Surf. Coat. Technol. 154 (2002) 314-318.
    [186]. D. A. Becerik, A. Ayday, L.C. Kumruoğlu, S.C. Kurnaz, A. Özel, The Effects of Na2SiO3 Concentration on the Properties of Plasma Electrolytic Oxidation Coatings on 6060 Aluminum Alloy, J. Mater. Eng. Perform. 21 (2012) 1426-1430.
    [187]. M. Weiyi, H. Yong, Study on Micro-Arc Oxidized Coatings on Magnesium in Three Different Electrolytes, Rare Metal Mat. Eng. 39 (2010) 1129-1134.
    [188]. A. Ghasemi, V.S. Raja, C. Blawert, W. Dietzel, K. Kainer, The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings, Surf. Coat. Technol. 204 (2010) 1469-1478.
    [189]. C. C. Tseng, J.L. Lee, T.H. Kuo, S.N. Kuo, K.H. Tseng, The influence of sodium tungstate concentration and anodizing conditions on microarc oxidation (MAO) coatings for aluminum alloy, Surf. Coat. Technol. 206 (2012) 3437-3443.
    [190]. K. Aramaki, The inhibition effects of chromate-free, anion inhibitors on corrosion of zinc in aerated 0.5 M NaCl, Corros. Sci. 43 (2001) 591-604.
    [191]. A. I. Muñoz, J.G. Antón, J.L. Guiñón, V.P. Herranz, Comparison of inorganic inhibitors of copper, nickel, and copper–nickels in aqueous lithium bromide solution, Electrochim. Acta 50 (2004) 957-966.
    [192]. Q. Cai, L. Wang, B. Wei, Q. Liu, Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes, Surf. Coat. Technol. 200 (2006) 3727-3733..
    [193]. H. Duan, C. Yan, F. Wang, Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D, Electrochim. Acta 52 (2007) 3785-3793.
    [194]. Z. Wang, L. Wu, Y. Qi, W. Cai, Z. Jiang, Self-lubricating Al2O3/PTFE composite coating formation on surface of aluminum alloy, Surf. Coat. Technol. 204 (2010) 3315-3318.
    [195]. S. Ikonopisov, Theory of electrical breakdown during formation of barrier anodic films, Electrochim. Acta 22 (1977) 1077-1082.
    [196]. J. M. Albella, I. Montero, J.M. Martinez-Duart, A theory of avalanche breakdown during anodic oxidation, Electrochim. Acta 32 (1987) 255-258.
    [197]. V. Dehnavi, W.J. Binns, J.J. Noël, D.W. Shoesmith, B.L. Luan, Growth behavior of low-energy plasma electrolytic oxidation coatings on a magnesium alloy, J. Magnesium Alloy 6 (2018) 229-237.
    [198]. S. Ono, K. Kuramochi, H. Asoh, Effects of electrolyte pH and temperature on dielectric properties of anodic oxide films formed on niobium, Corros. Sci. 51 (2009) 1513-1518.
    [199]. M. Molaei, A. Fattah-Alhosseini, M.K. Keshavarz, Influence of different sodium-based additives on corrosion resistance of PEO coatings on pure Ti, J. Asian Ceram. Soc. 7 (2019) 247-255.
    [200]. A. Bordbar-Khiabani, S. Ebrahimi, B. Yarmand, Plasma electrolytic oxidation of monocrystalline silicon using silicate electrolyte containing boric acid, App. Sur. Sci. 462 (2018) 913-922.
    [201]. W. Skoneczny, Model of Structure of Al2O3 Layer Obtained Via Hard Anodising Method, Surf. Eng. 17 (2001) 389-392.
    [202]. H. F. Guo, M.Z. An, Growth of Ceramic Coatings on AZ91D Magnesium Alloys by Micro-Arc Oxidation in Aluminate–Fluoride Solutions and Evaluation of Corrosion Resistance, Appl. Surf. Sci. 246 (2005) 229-238.
    [203]. H. Duan, K. Du, C. Yan, F. Wang, Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D, Electrochim. Acta 51 (2006) 2898-2908.
    [204]. X. Han, X.P. Zhu, M.K. Lei, Electrochemical properties of microarc oxidation films on a magnesium alloy modified by high-intensity pulsed ion beam, Surf. Coat. Technol. 206 (2011) 874-878.
    [205]. W. Mu, Y. Han, Characterization and Properties of the MgF2/ZrO2 Composite Coatings on Magnesium Prepared by Micro-Arc Oxidation, Surf. Coat. Technol. 202 (2008) 4278-4284.
    [206]. F. Liu, J.L. Xu, D.Z. Yu, F.P. Wang, L.C. Zhao, Effects of cathodic voltages on the structure and properties of ceramic coatings formed on NiTi alloy by micro-arc oxidation, Mater. Chem. Phys. 121 (2010) 172-177.
    [207]. S. Ono, S. Moronuki, Y. Mori, A. Koshi, J. Liao, H. Asoh, Effect of Electrolyte Concentration on the Structure and Corrosion Resistance of Anodic Films Formed on Magnesium through Plasma Electrolytic Oxidation, Electrochim. Acta 240 (2017) 415-423.
    [208]. B. Haghighat Shishavan, R. Azari-Khosrowshahi, S. Haghighat-Shishvan, M. Nazarian-Samani, N. Parvini-Ahmadi, Improving wear and corrosion properties of alumina coating on AA7075 aluminum by plasma electrolytic oxidation: Effects of graphite absorption, Appl. Surf. Sci. 481 (2019) 108-119
    [209]. F. Mansfeld, M.W. Kendig, Evaluation of Anodized Aluminum Surfaces with Electrochemical Impedance Spectroscopy, J. Electrochem. Soc 135 (1988) 828.
    [210]. S. C. Chung, J.R. Cheng, S.D. Chiou, EIS behavior of anodizing zinc in chloride environments, Corros. Sci. 42 (2000) 1249-1268.
    [211]. S. J. Xia, R. Yue, R.G. Rateick Jr, V.I. Birss, Electrochemical Studies of AC/DC Anodized Mg Alloy in NaCl Solution, J. Electrochem. Soc 151 (2004) B179.
    [212]. L. Zhu, J. Qiu, J. Chen, W. Zhang, Z. Chen, T. Zhang, Microstructure and corrosion resistance of the PEO coating on extruded Al6Cu alloy, Surf. Coat. Technol . 369 (2019) 116–126.
    [213]. M. Ates, N. Uludag, Synthesis of 5-(3,6-di(thiophene-2-yl)-9H-carbazole-9-yl)pentane-1-amine and Electrochemical Impedance Spectroscopy, Polym. Plast. Technol. Eng. 51 (2012) 640–646.
    [214]. M. Toorani, M. Aliofkhazraei, Review of electrochemical properties of hybrid coating systems on Mg with plasma electrolytic oxidation process as pretreatment, Surf. Interfaces 14 (2019) 262–295.
    [215]. M. Toorani, M. Aliofkhazraei, M. Golabadi, A.S. Rouhaghdam, Effect of lanthanum nitrate on the microstructure and electrochemical behavior of PEO coatings on AZ31 Mg alloy, J. Alloys Compd. 719 (2017) 242-255.
    [216]. V. Ezhilselvi, J. Nithin, J.N. Balaraju, S. Subramanian, The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy, Surf. Coat. Technol. 288 (2016) 221-229.
    [217]. K. Du, X. Guo, Q. Guo, Y. Wang, F. Wang, Y. Tian, Effect of PEO Coating Microstructure on Corrosion of Al 2024, J. Electrochem. Soc. 159 (2012) C597-C606.
    [218]. H. Duan, C. Yan, F. Wang, Growth Process of Plasma Electrolytic Oxidation Films Formed on Magnesium Alloy AZ91D in Silicate Solution, Electrochim. Acta 52 (2007) 5002-5009.
    [219]. H. F. Nabavi, M. Aliofkhazraei, Morphology, composition and electrochemical properties of bioactive-TiO2/ HA on CP-Ti and Ti6Al4V substrates fabricated by alkali treatment of hybrid plasma electrolytic oxidation process (estimation of porosity from EIS results), Surf. Coat. Technol. 375 (2019) 266–291.
    [220]. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W. S Miller, Recent development in aluminum alloys for aerospace applications, Mater. Sci. and Eng.: 280 (2000) 102-107.
    [221]. M. Shaira, S. Yousef, Modification of Aluminium 6063 Microstructure by Adding Boron and Titanium to Improve the Thermal Conductivity, J. Mater. 2018 (2018) 6.
    [222]. J. Hirsch, Recent development in aluminum for automotive applications, Trans. Nonferrous Met. Soc. China 24 (2014) 1995-2002.
    [223]. B. L. Mordike, T. Ebert, Magnesium: Properties — applications — potential, Mater. Sci. Eng.: A, 302 (2001) 37-45.
    [224]. D. Naha, S. Chatterjee, M. Ghosh, J. Majumdar, A. Majumdar, HVOF Sprayed WC-Cocr Coating on Mild Steel: Microstructure and Wear Evaluation, J. Appl. Phys. 8 (2016) 47-56.
    [225]. I.J. Hwang, K.R. Shin, J.S. Lee, Y.G. Ko, D.H. Shin, Formation of Black Ceramic Layer on Aluminum Alloy by Plasma Electrolytic Oxidation in Electrolyte Containing Na2WO4, Mater. Trans. 53 (2012) 559-564.
    [226]. S. H. Awad, H.C. Qian, Effects of cathodic component of current on porosity and hardness characteristics of micro plasma oxidation (MPO) coatings on aluminum alloy, Trans. Nonferous Met. Soc. china 15 (2005) 113-118.
    [227]. T. Bao Van, S.D. Brown, G.P. Wirtz, Mechanism of Anodic Spark Deposition, Am. Ceram. Soc. Bull. 56 (1977) 6.
    [228]. Y. Guan, Y. Xia, G. Li, Growth mechanism and corrosion behavior of ceramic coatings on aluminum produced by autocontrol AC pulse PEO, Surf. Coat. Technol. 202 (2008) 4602-4612.
    [229]. M. Petković, S. Stojadinović, R. Vasilić, I. Belča, Z. Nedić, B. Kasalica, U.B. Mioč, Preparation of silicate tungsten bronzes on aluminum by plasma electrolytic oxidation process in 12-tungstosilicic acid, Appl. Surf. Sci. 257 (2011) 9555-9561.
    [230]. A. Lugovskoy, M. Zinigrad, A. Kossenko, B. Kazanski, Production of ceramic layers on aluminum alloys by plasma electrolytic oxidation in alkaline silicate electrolytes, Appl. Surf. Sci. 264 (2013) 743-747.
    [231]. Z. Zhu, Y. Li, X. Wang, H. Chen, Surface treatment to reduce and redistribute residual-stresses in A7N01 weld by micro-arc oxidation, J. Mater. Process. Technol. 231 (2016) 248-253
    [232]. G. Barati Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade, Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications, J. Magnesium and Alloys 5 (2017) 74-132.
    [233]. X. Tu, C. Miao, Y. Zhang, Y. Xu, J. Li, Plasma Electrolytic Oxidation of Magnesium Alloy AZ31B in Electrolyte Containing Al₂O₃ Sol as Additives, Mater. 11 (2018) 1618.
    [234]. R.O. Hussein, X. Nie, D.O. Northwood, Plasma electrolytic oxidation coatings on Mg-alloys for improved wear and corrosion resistance: Material Performance and Cathodic Protection, Trans. Eng. Sci. 91 (2017) 163-176.
    [235]. H. Nasiri Vatan, Wear and Corrosion Performance of PEO-synthesized SiC Nanocomposite Coatings: Effect of Processing Time and Current Density, Int. J. Electrochem. Sci. 11 (2016) 5631-5654.
    [236]. Q. B. Li, C.C. Liu, W.B. Yang, J. Liang, Growth mechanism and adhesion of PEO coatings on 2024Al alloy, Surf. Eng. 33 (2017) 760-766.
    [237]. V. K. Patel, S. Bhowmik, Plasma Processing of Aluminum Alloys to Promote Adhesion: A Critical Review, Int. J. Adhes. Adhes. 5 (2017) 79-104.
    [238]. J.A. Curran, T.W. Clyne, The thermal conductivity of plasma electrolytic oxide coatings on aluminum and magnesium, Surf. Coat. Technol. 199 (2005) 177-183.
    [239]. W. Li, M. Tang, L. Zhu, H. Liu, Formation of microarc oxidation coatings on magnesium alloy with photocatalytic performance Weiping, Appl. Surf. Sci. 258 (2012) 10017–10021.
    [240]. C. J. Hu, M.-H. Hsieh, Preparation of ceramic coatings on an Al-Si alloy by the incorporation of ZrO2 particles in microarc oxidation, Surf. Coat. Technol. 258 (2014) 275-283.
    [241]. M. Aliofkhazraei, A.S. Rouhaghdam, Fabrication of functionally gradient nanocomposite coatings by plasma electrolytic oxidation based on variable duty cycle, Appl. Surf. Sci. 258 (2012) 2093-2097.
    [242]. M. Aliofkhazraei, A. S. Rouhaghdam, T. Shahrabi, Abrasive wear behavior of Si3N4/TiO2 nanocomposite coatings fabricated by plasma electrolytic oxidation, Surf. Coat. Technol. 205 (2010) S41-S46.
    [243]. J.-H. Wang, M.-H. Du, F.-Z. Han, J. Yang, Effects of the ratio of anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic coatings on Al alloys, Appl. Surf. Sci. 292 (2014) 658–664
    [244]. R. Khan, A.L. Yerokhin, X. Li, H. Dong, A. Matthews, Influence of current density and electrolyte concentration on DC PEO titania coatings, Surf. Eng. 30 (2014) 102-108.
    [245]. M. Sandhyarani, T. Prasadrao, N. Rameshbabu, Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium, Appl. Surf. Sci. 317 (2014) 198–209.
    [246]. D. Venkateswarlu, N. Rameshbabu, S. D, B. A.C, V. Muthupandi, B. N.K, S. Subramanian, Role of electrolyte additives on in-vitro electrochemical behavior of micro arc oxidized titania films on Cp Ti, Appl. Surf. Sci. 258 (2012) 6853–6863.
    [247]. M. Sandhyarani, N. Rameshbabu, K. Venkateswarlu, D. Sreekanth, Ch. Subrahmanyam, Surface morphology, corrosion resistance and in vitro bioactivity of P containing ZrO2 films formed on Zr by plasma electrolytic oxidation, J. Alloys Compd. 553 (2013) 324–332.
    [248]. R. Khan, A. Yerokhin, T. Pilkington, A. Leyland, A. Matthews, Residual stresses in plasma electrolytic oxidation coatings on A1 alloy produced by pulsed unipolar current, Surf. Coat. Technol. 200 (2005) 1580–1586.
    [249]. A. Thangavelu, N. Kishore Babu, L. Krishna, N. Rameshbabu, Influence of frequency and duty cycle on microstructure of plasma electrolytic oxidized AA7075 and the correlation to its corrosion behavior, Surf. Coat. Technol. 280 (2015) 116-147.
    [250]. L.r. Chang, F. Cao, J.-s. Cai, W.-j. Liu, Z. Zhang, J.-q. Zhang, Influence of electric parameters on MAO of AZ91D magnesium alloy using alternative square-wave power source, Trans. Nonferrous Met. Soc. China 21 (2011) 307–316.
    [251]. T. Seop Lim, H. Sam Ryu, S.-H. Hong, Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation, Corros. Sci. 62 (2012) 104-111.
    [252]. B. S. Necula, L.E. Fratila-Apachitei, A. Berkani, I. Apachitei and J. Duszczyk, Enrichment of anodic MgO layers with Ag nanoparticles for biomedical applications, J. Mater. Sci. - Mater. Med. 20 (2008) 339-345.
    [253]. B. Lou, Y.-Y. Lin, C.-M. Tseng, Y.-C. Lu, J.-G. Duh, J.-W. Lee, Plasma electrolytic oxidation coatings on AZ31 magnesium alloys with Si3N4 nanoparticle additives, Surf. Coat. Technol. 332 (2017) 358-367.
    [254]. W.-C. Gu, G.-H. Lv, H. Chen, G.-L. Chen,W.-R. Feng, G.-L. Zhang, S.-Z. Yang, Investigation of morphology and composition of plasma electrolytic oxidation coatings in systems of Na2SiO3–NaOH and (NaPO3)6–NaOH, J. Mater. Process. Technol. 182 (2007) 28–33.
    [255]. J. f. Li, L. Wan, J. Feng, Micro arc oxidation of S-containing TiO2 films by sulfur bearing electrolytes, J. Mater. Process. Technol. 209 (2009) 762–766.
    [256]. M. Laleh, F. Kargar, A. Sabour Rouh Aghdam, R. Ó Aca, Formation of a compact oxide layer on AZ91D magnesium alloy by microarc oxidation via addition of cerium chloride into the MAO electrolyte, J. Coat. Technol. Res. 8 (2011) 765.
    [257]. S. Wang, X. Liu, X. Yin, N. Du, Influence of electrolyte components on the microstructure and growth mechanism of plasma electrolytic oxidation coatings on 1060 aluminum alloy, surf. coat. technol. 381 (2020) 125214.
    [258]. J.-H. Lee, S.-J. Kim, Effects of silicate ion concentration on the formation of ceramic oxide layers produced by plasma electrolytic oxidation on Al alloy, Jpn. J. Appl. Phys. 56 (2017) 1-6.
    [259]. S. Rahimi, B. Yarmand, A. Kolahi, Effect of current density, duty cycle and duration time on corrosion behavior of Al alloy treated by plasma electrolytic oxidation, Iranian Ceram. Soc. 11 (2017) 1.
    [260]. X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K.U. Kainer and M.L. Zheludkevich, Plasma electrolytic oxidation coatings with particle additions – A review, Surf. Coat. Technol. 307 (2016) 1165-1182.
    [261]. H. NasiriVatan, R. Ebrahimi-Kahrizsangi, M.K. Asgarani, Tribological performance of PEO-WC nanocomposite coating on Mg Alloys deposited by Plasma Electrolytic Oxidation, Tribol. Int. 98 (2016) 253-260.
    [262]. Y. M. Wang, D. C. Jia, L. X. Guo, T. Q. Lei, B. L. Jiang, Effect of discharge pulsating on microarc oxidation coatings formed on Ti6Al4V alloy, Mater. Chem. Phys. 90 (2005) 128–133.
    [263]. Z. Shahri, S.R. Allahkaram, R. Soltani, H. Jafari, Optimization of plasma electrolyte oxidation process parameters for corrosion resistance of Mg alloy, J. Magnesium and Alloys (2018), 1-10
    [264]. T. Arunnellaiappan, S. Anoop, N. Rameshbabu, Fabrication of multifunctional black PEO coatings on AA7075 for spacecraft applications. Surf. Coat. Technol. 307 (2016) 735-746.
    [265]. J. Malzbender, J.M.J. Den Toonder, A.R. Balkenende, G. De With, Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol-gel coatings on glass, Mater. Sci. Eng. R Rep. 36 (2002) 47-103
    [266]. H. R. Masiha, H.R. Bagheri, M. Gheytani, M. Aliofkhazraei, A. Sabour Rouh Aghdam, T. Shahrabi, Effect of surface nanostructuring of aluminum alloy on post plasma electrolytic oxidation, Appl. Surf. Sci. 317 (2014) 962-969.
    [267]. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, I. M. Imshinetskiy, A. V. Samokhin, Yu. V. Tsvetkov, Fabrication of Coatings on the Surface of Magnesium Alloy by Plasma Electrolytic Oxidation Using ZrO2 and SiO2 Nanoparticles, J. Nanomater. 2015 (2015) 12
    [268]. K.-J. Ma, M.M.S. Al Bosta, W.-T. Wu, Preparation of self-lubricating composite coatings through a micro-arc plasma oxidation with graphite in electrolyte solution, Surf. Coat. Technol. 259 (2014) 318-324.
    [269]. A. Akbar, M. Qaiser, A. Hussain, R. Mustafa, D. Xiong, Surface Modification of Aluminum Alloy 6060 through Plasma Electrolytic Oxidation, Int. J. Eng. Works 4 (2017) 114-123
    [270]. J.A.Curran, H.Kalkancı, Yu.Magurova, T.W.Clyne, Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications, Surf. Coat. Technol. 201 (2007) 8683-8687.

    無法下載圖示 全文公開日期 2025/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE