簡易檢索 / 詳目顯示

研究生: 彭昭華
Chao-Hua Peng
論文名稱: 立方氮化硼砂輪瓷質結合劑特性研究
Characteristics of vitrified binders for Cubic Boron Nitride grinding wheels.
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 郭東昊
Dong-Hau Kuo
藍敏雄
Ming-Shong Lan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 104
中文關鍵詞: 立方氮化硼砂輪瓷質結合劑
外文關鍵詞: Cubic Boron Nitride, Grinding wheel, Vitrified binder
相關次數: 點閱:330下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討CBN砂輪之瓷質結合劑,選定以透輝石(CaMgSi2O6)玻璃陶瓷系統,因瓷質結合劑擁有可修整、剛性高、耐磨性佳、耐熱性大等特性;玻璃陶瓷具有高緻密性且可以低溫燒結之特性,而玻璃陶瓷中相結構與結晶度可藉由後處理控制,故本文以不同熱處理方法控制相成分比例,來提升物理特性;另外為了增加內部玻璃體的網絡結構,因此在內部添加TiO2,預期能夠得到具有高強度的玻璃陶瓷結合劑。
    本實驗設計玻璃瓷質結合劑成分以Ca-Mg-Si-B(CMSB)為主,SiO2、B2O3為玻璃形成劑,而在B2O3添加至30%以上時可以有效的提升與CBN磨料的潤濕性;我們透過設計玻璃的修飾劑希望能夠增加結合劑的物理性質,例如:Mg、Ca、Ba等鹼土族元素,因為離子半徑大、電價高、鍵結能高,會與氧鍵結較鹼金族更穩定,使鍵結結構強度增加,材料的物理強度增加,熱膨脹係數隨著降低,因陶瓷體能夠有效增加玻璃體韌性,故實驗設計以莫耳成分比例透輝石相Ca :Mg:Si=1:1:2之成分比例配製結合劑;另外本實驗再添加2~8mol%的TiO2融熔成最後的玻璃體,期望Ti4+在玻璃內部鍵結可以增加玻璃網絡緻密性,增加玻璃體物理強度,本實驗利用FT-IR在有添加TiO2可以發現內部有產生[TiO4]與[TiO6]鍵結,此兩種鍵結在玻璃體有較小的鍵結結構大小,能夠填補[SiO4]的鍵結空隙,得到緻密的玻璃網絡。
    實驗中添加不同TiO2來控制玻璃體網絡的鍵結狀況,接著利用熱處理使內部產生透輝石相結晶體,以不同熱處理參數來控制玻璃體與陶瓷體的比例,由物理特性發現在CMSB熱處理760oC持溫5小時與800oC持溫2小時的表面硬度在4T時可達572.3 HV和592.1 HV,抗折強度為97.4 Mpa和98.5 Mpa,是為各玻璃陶瓷成分中的最高值,利用Rietveld method分析結晶相比為18%和44%,在更高持溫時間與更高溫層雖然有多的結晶透輝石相產生,但是在物理特性上並無明顯的增加,故在此時的玻璃網絡與結晶相提供結合劑最佳的物理特性。
    另外由韌性上可以發現,在透輝石相較少的760oC持溫2hrs添加4%TiO2破裂韌性約0.073 MPa√m 結晶度約6%,在隨著熱處理時間和溫層的增加,發現到韌性會因為陶瓷體產生,破裂韌性大幅增加,在760oC持溫10小時4% TiO2添加其結晶度有82.7%,此時韌性值為0.177 MPa√m,可以明顯的發現到,破裂韌性會隨著透輝石相結晶度增加而大幅提升。
    本研究開發出在瓷質結合劑中產生透輝石相CMSB4T有獨特的物理特性,由於鹼土元素提供比鹼金元素有優異的強度與熱膨脹係數,在控制內部的透輝石結晶相後也有效的提升韌性。


    In this study, the glass-ceramic binding agent of cubic boron nitride (CBN) grinding wheel were developed and investigated. The Diopside (CaMgSi2O6) was selected to be used in glass-ceramic systems. This type of ceramic binders have high dressibility, high rigidity, high wear resistance, high heat resistance and other characteristics. Glass ceramics have high density and can be sintered at low-temperature. Furthermore, the glass-ceramic phase structure and crystallization degree can be controlled by post-treatment. Because of these reasons, this study uses different heat treatment methods to control the phase composition ratio, to improve the physical properties in order to increase the internal structure of the glass network, as a result TiO2 was added to obtain high strength glass ceramic binder.
    This experiment was designed to use glass compositions with Ca-Mg-Si-B (CMSB) as the main components, and TiO2 as the modifier, in order to form ceramic binding agent. When more than 30% of B2O3 was added, we can effectively increase the CBN abrasive wetting property. Mg, Ca, Ba and other alkaline earth (AE) elements, possess larger ionic radius, higher electronic valence, higher bonding energy, and therefore oxide bonding is more stable than those in the alkali metal group. The covalent/ionic bonding of AE elements can increase structural strength, enhance physical properties of the glass and therefore decrease thermal expansion coefficient of glass. Therefore in this experimental we use Ca: Mg: Si = 1: 1: 2 ratio of ingredients to formulate the binder, and add 2 ~ 8 mol% of TiO2 into the final glass melt in order to produce Ti4+ bonds inside the glass to increase network density and to increase physical strength of the glass. FT-IR were also employed to investigate the glass, and TiO2 addition was found to generate [TiO4] and [TiO6] bonding in the glass, which increases network density, and physical strength of the glass phase.
    TiO2 can also work as a nucleation agent in the experiment and therefore we perform heat treatments to make diopside crystal phase precipitate with different heat treatment parameters to control the ratio of glass-ceramic phases in CMSB glass. Heat treatment at 760oC for 5 hours and at 800oC for 2 hours of the CMSB4T specimens produce surface hardness of up to 572 HV and 592 HV, and bending strength of 97.4 Mpa and 98.5 Mpa. Analyzing the crystal phase using Rieveld method indicates 18% and 44% of formation of the diopside phase. Although longer holding time and higher annealing temperature generate more diopside crystal phase, no significant increase in hardness and bending strength, indicating an appropriate arrangement of the glass network and the amount of crystal phase provides optimum hardness and bending strength of the binding agent.
    As to toughness of the CMSB4T glass ceramics, the material treated at 760oC, 2hrs with fewer diopside phase (6%) exhibit fracture toughness of about 0.073 MPa√m; on the other hand, the specimen treated at 760oC, 10 hrs with a crystallinity of 82.7% show a the fracture toughness of 0.177 MPa√m, implying that fracture toughness of the glass-ceramics increases with the amount of the diopside phase.
    The current results show that a designed glass-ceramic system based upon alkaline-earth element provides better toughness, strength and thermal expansion than those with alkaline elements, which may work as a better CBN binding agent in grinding wheel applications.

    第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 文獻回顧 3 2-1 砂輪種類 3 2-2 磨削原理 4 2-3 WA砂輪與CBN砂輪切削力型態 5 2-4 傳統砂輪與高速砂輪 5 2-4-1 超高速磨削和高效深磨 6 2-4-2 磨削效率 7 2-4-3 磨削力與精度 7 2-4-4 工件表面品質 7 2-4-5 超硬磨料砂輪及其修整 10 2-4-6 超高速磨床的主軸系統和進給系統 10 2-4-7 主軸系統 10 2-5 CBN砂輪 11 2-5-1 CBN砂輪壽命 11 2-5-2 CBN磨料種類 12 2-6 CBN砂輪結合劑 14 2-6-1樹脂和金屬結合劑 14 2-6-2 電鑄結合劑 14 2-6-3 陶瓷結合劑 14 2-7 玻璃陶瓷製程、成長機制與成核動力學理論 16 2-7-1玻璃的形成 16 2-7-2 玻璃陶瓷之製程 19 2-8 CBN砂輪瓷質結合劑種類與需要性質 20 2-8-1玻璃形成劑與CBN潤濕性 20 2-8-2熱膨脹係數與機械強度[8][9][25][26] 20 2-8-3韌性的提升 21 2-9 成核機制 22 2-9-1 均質成核 ( homogeneous nucleation ) 22 2-9-2 異質成核 ( heterogeneous nucleation ) 24 2-9 透輝石相瓷質結合劑 25 2-9-1 透輝石相之化學成分與結晶構造 26 第三章 實驗步驟與方法 30 3-1 實驗流程 30 3-2 實驗儀器與規格 33 3-3 材料性質量測方法 33 3-3-1 Vickers hardness硬度分析 33 3-3-2 四點抗折強度分析 35 3-3-3 SEM/BEI 微觀分析 35 3-3-4 XRD相結構分析 36 3-3-5 Rietveld method 結晶度精算 36 3-3-5傅立葉紅外線分析儀(FT-IR) 38 3-3-6 阿基米德密度量測 38 3-3-7 DTA熱差分析 39 3-3-8 TMA熱機械分析 39 第四章 結果與討論 40 4-1 結合劑製程與檢測 41 4-2 熱差分析儀分析 41 4-2-1 成核機制 41 4-2-2 熱差分析儀(Differential Thermal Analysis,DTA) 42 4-3 X-ray 44 4-3-1 X-ray分析 44 4-3-2 Rietveld method 結晶度計算 49 4-4 傅立葉紅外線分析儀(FT-IR) 56 4-5熱機械分析儀(Thermal mechanical analysis,TMA) 58 4-6 物理特性量測 60 4-6-1 阿基米德密度量測 60 4-6-2 表面硬度 62 4-6-3 破裂韌性 66 4-6-4 四點抗折(Four points bending test) 73 4-7 760oC持溫5小時與鹼金族添加TiO2結合劑比較結果 75 第五章 結論 76 第六章 參考文獻 78 附錄一 其他應用結合劑表面硬度、韌性和磨料SEM圖 83

    1. Robert H. Todd, Dell K. Allen and Leo Alting.”Manufacturing Processes Reference Guide. “Industrial Press Inc. (1994) pp. 43-48. ISBN 0-8311-3049-0.
    2. 美國奇異公司磨料型錄
    3. Lort, W., “A Model of the Cutting Mechinism in Grinding Wear.”, 53(1979), P115-128.
    4. Bellows, G.,” Low Stress Grinding for Quality Production.”, Publ. MDC 78-103, Machinbility Data Certer, 1978
    5. Akinori YUI , Hwa-Soo LEE,” Surface grinding with ultra high speed CBN wheel.”, Journal of Materials ProcessingTe chnology 62 (1996) 393-396.
    6. W. Brian Rowe, “Thermal analysis of high efficiency deep grinding.”, International Journal of Machine Tools & Manufacture 41 (2001) 1–19.
    7. M.J. Jackson, C.J. Davis, M.P. Hitchiner, B. Mills,” High-speed grinding with CBN grinding wheels-applications and future technology.”, Journal of Material Processing Technology, 110, 2001,pp77-88
    8. M.J. Jackson, B. Mills,” Materials selection applied to vitrified alumina & CBN grinding wheels”, Journal of Material Processing Technology,108, pp114-124
    9. Ioan D. Marinescu, Mike Hitchiner, Eckart Uhlmann, W. Brian Rowe, Ichiro Inasaki,” Handbook of Machining with Grinding Wheels.”,Taylor & Francis Group, LLC,2007
    10. N.Narutaki,Y.Yamane,” Tool wear and cutting temperature of CBN Tool in machining of hardness steels.”, Annals of the CIRP, Vol28,1979,pp23-28.
    11. K. Subramanian, R. P. Lindsay, “A systems approach for the use of vitrified bonded superabrasive wheels for precision production grinding.”, Journal of Engineering fot Industry, Vol. 114, 1992, pp42-52.
    12. Y. Matsumoto, M. M. Barash, C. R. Liu,” Cutting mechanism during machining of hardened steel.”, Materials Science and Technology, Vol. 3, Apr, 1987,pp 299-305.
    13. M. C. Shaw,” Chip formation in the machining of hardened steel, annals of the CIRP.”, Vol. 42, 193, pp.29-33.
    14. W. Konig, M, Klinger, R. Link,” Machining hard materials with geometrically defined cutting Edges-Field of applications and limitations, annals of the CIRP.”, Vol. 39, 1990, pp.61-64.
    15. R. Komanduri, T. Schroeder, J. Hazra, B. F. von Turkovich, D. G. Flom, “On the catastrophic shear instability in high-speed machining of ab AISI 4340 steel.”, ASME, Journal of Engineering for Industry, Vol. 104, May, 1982, pp.121-131.
    16. T. Ohtani, H. Yokogawa, “The effect of workpiece hardness on tool wear characteristics.”, Bull. JSPE,Vol. 21, Sep,1988, pp.229-231.
    17. S. Enomoto, M. Kato, S. Miyazawa, T. Ono,” Characteristic of tool life of CBN cutting tool in turning chromium-Molybdenum steels of various hardnesses.”, Bull. JSPE, Vol. 21, Sep, 1987, pp.209-210.
    18. S. Ammi, M. Doi, H. Sato, H. Ishida, “Wear characteristic of hard tools in the cutting of high-Carbon steels.”, JSME, Part C, Vol. 59, May, 1993,pp.909-914.
    19. G.Chryssolouris,”Turning of Hardened steels using CBN tool.”, Journal Applied Metalworking, Vol.2,1982,pp.100.
    20. K.Weinert,L.Cronjager, “Relation between process energy and tool wear when turning hardfacing alloys.”, Annals of the CIRP, Vol.43,1994,pp.97-100.
    21. S.F. Krar, E. Ratterman,” Superabrasives-grinding and maching.”, McGraw-Hill, Inc.,1990.
    22. 吳朗,”電子陶瓷-絕緣陶瓷”,全欣出版,民國83.
    23. 汪建民主編, “陶瓷技術手冊(下)”, 中華民國粉末冶金協會,1994.
    24. H.K. Tonshoff, H. G. Wobker, G. Brunner,” CBN grinding with small wheels.”,Annals of the CIRP Vol. 44/1/1995,pp.311-316.
    25. N. Lahl, K. Singh, L. Singheiser, K. Hilpert, “Crystallisation kinetics in AO-Al2O3-SiO2-B2O3 glasses (A = Ba, Ca, Mg).”, Journal Of Materials Science 35 (2000) 3089 – 3096.
    26. Dongdong Shan, Zhihong Li, Yumei Zhu , Hang Ye, Kai Gao, Yanyan Yu, “Influence of TiO2 on the physical properties of low-temperature ceramic vitrified bond and mechanical properties of CBN composites.”, Ceramics International 38 (2012) 4573–4578.
    27. Daniela Herman, Jan Krzos,” Influence of vitrified bond structure on radial wear of cBN grinding wheels.”, Journal of Materials Processing Technology 209 (2009) 5377–5386.
    28. N. Morimoto, “Nomenclature of pyroxenes.”, Canadian Mineralogist., 27, 143-156, 1989.
    29. W. A. Deer, R. A. Howie, and J. Zussman, Rock-Forming Minerals 2A. Second Edition, Single Chain Silivate. John Wiley., New York, 1978.
    30. 王守誠,“澎湖群島斜輝石偉晶之化學特性在岩漿演化之應用”,國立成功大學碩士論文,中華民國96年。
    31. P. Hudon, I. H. Jung and D. R. Baker, “Experimental Investigation and Optimization of Thermodynamic Properties and Phase Diagrams in the Systems CaO-SiO2,MgO-SiO2, CaMgSi2O6-SiO2 and CaMgSi2O6-Mg2SiO4 to 1.0 GPa.”, Journal of Petrology., 46, 2005.
    32. B. J. Wood, and R. Trigila, “Experimental determination of aluminous clinopyroxene–melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas.”, Chemical Geology., 172, 213-223, 2001.
    33. G. W. C. Kaye, and T. H. Laby, “Tables of Physical and Chemical Constants.”, 15th edn, Longman Science., London, 1986.
    34. H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures. “,Journal of Applied Crystallography., 2, 65-71, 1969.
    35. R. P. Hunt,” A magnetoresistive readout transducer.”, IEEE Transactions on Magnetics., 70, 150-154, 1971.
    36. M. N. Baibich, J. M. Broto, and A. Fert, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices.”, Physical Review Letters., 61, 2472-2475, 1988.
    37. G. H. Jonker, and J. H. Van Santen,” Ferromagnetic compounds of manganese with perovskite structure. Physica.”, 16, 337-349, 1950.
    38. A. Kern, Heidelberger Geowiss. Abh., 89, 323, 1998.
    39. E.I. Kamitsos, A.P. Patsis, M.A. Karakassides, G.D. Chryssikos, “Infrared reflectance spectra of lithium borate glasses .”,J. Non Cryst. Solids 126 (1990) 52.
    40. E.I. Kamitsos, M.A. Karakassides, G.D. Chryssikos, “Vibrational spectra of magnesium-sodium-borate glasses.”, J. Phys. Chem. 91 (1987) 1073.
    41. E.I. Kamitsos, M.A. Karakassides, G.D. Chryssikos,” Cation-network interactions in binary alkali metal borate glasses.”, Phys. Chem. Glasses 28 (1987) 203.
    42. J. Krogh-Moe, “The structure of vitreous and liquid boron oxide Phys.”, Chem. Glasses 6 (1965) 46.
    43. Kamitsos EI, Karakassides MA, Chryssikos GD.” A vibrational study of lithium borate glasses with high Li2O content.”, Phys Chem Glass 1987;28:203–9.
    44. Vincenzo Augugliaro, Salvatore Coluccia, Vittorio Loddo, Leonardo Marchese, Gianmario Martra, Leonardo Palmisano, Mario Schiavello, “Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation.”, Applied Catalysis B: Environmental 20 (1999) 15-27.
    45. Eung Soo Kim , Won Jae Yeo,” Thermal properties of CaMgSi2O6 glass–ceramics with Al2O3.”, Ceramics International 38S (2012) S547–S550.

    QR CODE