簡易檢索 / 詳目顯示

研究生: 林聖原
Sheng-Yuan Lin
論文名稱: 微弧氧化添加劑及電壓對鈦低碳鋼複合材料耐腐蝕性及耐磨耗性之影響
Effects of Additives and Voltages on Corrosion and Wear Resistance of Titanium/Low Carbon Steel Composite Materials in Micro-Arc Oxidation
指導教授: 黃昌群
Chang-Chiun Huang
口試委員: 郭中豐
Chung-Feng Kuo
曾有志
Yu-Chin Tzeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 110
中文關鍵詞: 低碳鋼熱噴塗微弧氧化二氧化鈦三氧化二鋁石墨烯碳化硼立方氮化硼
外文關鍵詞: low carbon steel, titanium, thermal spraying, micro-arc oxidation, titanium dioxide, alumina, graphene, boron carbide, cubic boron nitride
相關次數: 點閱:320下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微弧氧化(Micro-Arc Oxidation, MAO)可以加速鈦金屬表面氧化層之生成,此膜層具有良好的耐腐蝕性及耐磨耗性。本研究首先於AISI 1020低碳鋼基材表面進行噴砂處理達Sa3級,再熱噴塗上純鈦,形成鈦低碳鋼複合材料,接著於純鈦塗層上進行微弧氧化製成陶瓷層。在微弧氧化過程中,於矽酸鹽類的電解液中加入五種不同的添加劑,包含二氧化鈦0.5 g/L、三氧化二鋁0.5 g/L、石墨烯0.003 g/L、碳化硼0.5 g/L、立方氮化硼0.5 g/L,以及不同的微弧電壓250 V、350 V及450 V。最後利用掃描式電子顯微鏡、能量分散光譜儀、X射線繞射儀、測厚儀、表面粗糙度量測系統、磨耗試驗儀及恆電位儀分析陶瓷層之性質。依據損失重量判斷陶瓷層之耐磨耗性,結果顯示添加碳化硼有較低之平均損失重量(1 x 10-3 g),此外,立方氮化硼在微弧電壓450 V也具有較低的損失重量(8 x 10-4 g),代表其耐磨性較好。依據腐蝕電位及腐蝕電流判斷陶瓷層之耐腐蝕性,發現添加三氧化二鋁(450 V)以及立方氮化硼(250 V),有較高之腐蝕電位,分別為-0.368 V以及-0.378 V,且腐蝕電流與其他操作參數相近,以及添加石墨烯(450 V)與立方氮化硼(450 V),測得到較低之腐蝕電流,分別為1.34 x 10-5 A/cm2以及9.31 x 10-5 A/cm2,而腐蝕電位則與其他操作參數相近。此外,添加立方氮化硼於微弧電壓450 V時,同時具有較佳之耐腐蝕及耐磨耗性。


    Micro-arc oxidation (MAO) accelerates the formation of an oxide layer on the surface of titanium, which has good corrosion and wear resistance. In this study, the surface of AISI 1020 low carbon steel substrate was firstly sandblasted to Sa3 level, and then thermal sprayed with pure titanium to form a titanium/ low carbon steel composite material and followed by micro-arc oxidation on the pure titanium coating to form a ceramic layer. During the micro-arc oxidation process, five different additives added to the silicate electrolyte, including titanium dioxide 0.5 g/L、alumina 0.5 g/L、graphene 0.003 g/L、boron carbide 0.5 g/L, cubic boron nitride 0.5 g/L, and different micro-arc voltages of 250 V, 350 V, and 450 V were used. Finally, the scanning electron microscope, energy dispersive spectrometer, X-ray diffractometer, thickness gauge, surface roughness measurement system, abrasion tester, and constant potential meter were used to analyze the properties of the ceramic layers. The wear resistance of the ceramic layer is judged by the loss weight, and the results show that the addition of boron carbide has a lower average loss weight, and the cubic boron nitride (450 V) also has a lower loss weight (1 x 10-3 g), which indicates better wear resistance. Judging the corrosion resistance of the ceramic layers based on the corrosion potential and the corrosion current, it is found that the addition of alumina (450 V) and cubic boron nitride (250 V) gives higher corrosion potentials of -0.368 V and -0.378 V, respectively, and the corrosion current is similar to the other operating parameters, while the addition of graphene (450 V) and cubic boron nitride (450 V) gives lower corrosion currents of 1.34 x 10-5 A/cm2 and 9.31 x 10-5 A/cm2 were obtained, respectively, and the corrosion potential is similar to the other operating parameters. In addition, the addition of cubic boron nitride at 450 V also provides better corrosion and wear resistance.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 5 第2章 文獻回顧 6 2.1 鈦及二氧化鈦 6 2.2 表面處理 8 2.3 熱噴塗 12 2.4 微弧氧化 15 2.5 添加劑之選擇 32 2.5.1 三氧化二鋁 33 2.5.2 石墨烯 33 2.5.3 碳化硼 36 2.5.4 立方氮化硼 37 第3章 實驗方法 39 3.1 實驗流程 39 3.2 實驗方法與步驟 40 3.2.1 試片製備 40 3.2.2 熱噴塗純鈦 41 3.2.3 試片前處理 41 3.2.4 製備電解液 43 3.2.5 添加劑 43 3.2.6 微弧氧化 45 3.3 實驗參數 47 3.4 材料分析 50 3.4.1 表面形貌分析 50 3.4.2 成份分析 50 3.4.3 X光繞射儀分析 51 3.4.4 厚度分析 51 3.4.5 表面粗糙度分析 52 3.4.6 磨耗分析 53 3.4.7 電化學分析 54 第4章 實驗結果與分析 58 4.1 陶瓷層表面形貌分析 58 4.2 陶瓷層成份分析 64 4.3 陶瓷層晶相結構分析 67 4.4 陶瓷層厚度分析 71 4.5 陶瓷層表面粗糙度分析 73 4.6 陶瓷層磨耗分析 74 4.7 陶瓷層電化學分析 78 第5章 結論 85 參考文獻 88

    [1]謝明志,柯正龍,羅建明,推動腐蝕環境監測,確保公共建設品質&延年益壽,交通部運輸研究所,台北市,2019。
    [2]蔡立宏,羅建明,柯正龍,賴瑞應,黃宇謙,2019 年臺灣大氣腐蝕劣化因子調查研究資料年報,交通部運輸研究所,臺北市,2020。
    [3]曾國輝,李九龍,鋁合金微弧氧化陶瓷層性質之研究,龍華科技大學化工與材料工程系,桃園市,2007。
    [4]S. Ajmal, M. Bokhari, A. K. Kasi, J. K. Kasi, and M. Sohail, Effect of titanium substrate surface on the titanium oxide membrane pore diameter, formed upon anodization in the presence of fluoride ions, Theoretical and Experimental Chemistry, 56 (2020) 226-32.
    [5]L. Y. An, Y. Ma, X. X. Yan, S. Wang, and Z. Y. Wang, Effects of electrical parameters and their interactions on plasma electrolytic oxidation coatings on aluminum substrates, Transactions of Nonferrous Metals Society of China, 30 (2020) 883-895.
    [6]D. Quintero, O. Galvis, J. A. Calderón, J. G. Castaño, and F. Echeverría, Effect of electrochemical parameters on the formation of anodic films on commercially pure titanium by plasma electrolytic oxidation, Surface and Coatings Technology, 258 (2014) 1223-1231.
    [7]Y. H. Tang, D. Xiang, D. H. Li, L. Wang, P. Wang, and P. D. Han, Effects of current density in electrolyte containing graphene on properties of 2024 aluminum alloy micro-arc oxidation coating, Surface Technology, 47 (2018) 203-208.
    [8]李東翰,微弧氧化以不同電壓及時間運用於鈦鐵複合材料表面改質之研究,碩士論文,國立臺灣科技大學材料科學與工程研究所,臺北市,2019。
    [9]F. Xu, Y. Xia, and G. Li, The mechanism of PEO process on Al-Si alloys with the bulk primary silicon, Applied Surface Science, 255 (2009) 9531-9538.
    [10]Q. Shao, B. Jiang, and S. Huang, A comparative study on the microstructure and corrosion resistance of MAO coatings prepared in alkaline and acidic electrolytes, Materials Research Express, 6 (2019).
    [11]A. G. Rakoch, A. A. Gladkova, Z. Linn, and D. M. Strekalina, The evidence of cathodic micro-discharges during plasma electrolytic oxidation of light metallic alloys and micro-discharge intensity depending on pH of the electrolyte, Surface and Coatings Technology, 269 (2015) 138-144.
    [12]K. R. Shin, Y. G. Ko, and D. H. Shin, Effect of electrolyte on surface properties of pure titanium coated by plasma electrolytic oxidation, Journal of Alloys and Compounds, 509S (2011) S478–S481.
    [13]J. Li, H. Cai, X. Xue, and B. Jiang, The outward–inward growth behavior of microarc oxidation coatings in phosphate and silicate solution, Materials Letters, 64 (2010) 2102-2104.
    [14]P. Wang, J. P. Li, Y. C. Guo, Z. Yang, and J. L. Wang, Ceramic coating formation on high Si containing Al alloy by PEO process, Surface Engineering, 32 (2016) 428-434.
    [15]X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K. U. Kainer, and M. L. Zheludkevich, Plasma electrolytic oxidation coatings with particle additions – A review, Surface and Coatings Technology, 307 (2016) 1165-1182.
    [16]W. Shang, F. Wu, Y. Y. Wang, A. R. Baboukani, Y. Wen, and J. Jiang, Corrosion resistance of micro-arc oxidation/graphene oxide composite coatings on magnesium alloys, American Chemical Society Omega, 5 (2020) 7262-7270.
    [17]M. Shokouhfar and S. R. Allahkaram, Effect of incorporation of nanoparticles with different composition on wear and corrosion behavior of ceramic coatings developed on pure titanium by micro arc oxidation, Surface and Coatings Technology, 309 (2017) 767-778.
    [18]張庭愷,鄭凱文,曾傳銘,楊永欽,微弧氧化TiO2介層促進熱熔射噴塗氫氧基磷灰石塗層與鈦合金基材的結合性研究,106年臺灣陶瓷年會,國立成功大學,臺南市,2017。
    [19]P. K. Huang, J. W. Yeh, T. T. Shun, and S. K. Chen, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating, Advanced Engineering Materials, 6 (2004) 74-78.
    [20]Y. Fu, Y. Zhang, X. Y. Bao, W. Zhang, F. H. Wang, and L. Xin, Research progress on wear-resistant coatings for Ti-alloy, Journal of Chinese Society for Corrosion and Protection, 38 (2018) 117-123.
    [21]蘇明德,金屬之最,科學發展,555 (2019) 72-77。
    [22]蘇明德,鈦的自述,科學發展,426 (2008) 66-71。
    [23]M. Shokouhfar and S. R. Allahkaram, Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles, Surface and Coatings Technology, 291 (2016) 396-405.
    [24]莊雍帆,煅燒溫度對二氧化鈦光電催化降解染料之影響,碩士論文,朝陽科技大學環境工程與管理系,臺中市,2010。
    [25]賴曉芳,光觸媒二氧化鈦奈米材料的應用 第一部分:摻雜奈米金於二氧化鈦應用於染料敏化太陽能電池 第二部分:製備氧化鈀/二氧化鈦奈米材料感測甲醛氣體之研究,博士論文,靜宜大學應用化學系,臺中市,2014。
    [26]J. E. S. Haggerty, L. T. Schelhas, D. A. Kitchaev, J. S. Mangum, L. M. Garten, W. Sun, K. H. Stone, J. D. Perkins, M. F. Toney, G. Ceder, D. S. Ginley, B. P. Gorman, and J. Tate, High-fraction brookite films from amorphous precursors, Scientific Reports, 7 (2017) 1-11.
    [27]黃群勝,原子層沉積二氧化鈦薄膜之結構與光響應特性研究,碩士論文,南台科技大學電機工程系,臺南市,2006。
    [28]張懷瑋,二氧化鈦微結構探討與其雙晶面分析,碩士論文,國立中山大學材料與光電科學學系研究所,高雄市,2012。
    [29]咸才軍,奈米建材,五南圖書出版股份有限公司,(2004) 153-157。
    [30]莊旻翰,具電鍍Ni-B與Ni-Fe合金鍍層和電鍍Ni-Fe2O3複合鍍層之聚丙烯腈系碳纖維的催化石墨化,碩士論文,大同大學材料工程學所,臺北市,2020。
    [31]吳柏樺,利用脈衝電鍍將二氧化鈦沉積於氧化鋅上之複合電極對染料敏化太陽能電池之影響,碩士論文,國立東華大學材料科學與工程學系,花蓮縣,2014。
    [32]林自威,應用物理氣相沉積法製備低電阻高透光氧化物/銀複合薄膜之研究,博士論文,國立中央大學材料科學與工程研究所,桃園縣,2017。
    [33]鄧光穎,以物理氣相沉積合成過渡金屬二硫屬化物之碲化物,碩士論文,國立中央大學化學工程與材料工程學系,桃園縣2016。
    [34]溶射協會,溶射便覧,日刊工業新聞社,東京,1964。
    [35]C. H. Chang, M. C. Jeng, C. Y. Su, and C. L. Chang, An investigation of thermal sprayed aluminum/hard anodic composite coating on wear and corrosion resistant performance, Thin Solid Films, 517 (2009) 5265-5269.
    [36]吳淑媛,結合微弧氧化與鹼處理發展具有奈米形貌之二氧化鈦於鈦金屬及其染料敏化太陽電池之應用,碩士論文,逢甲大學材料科學所,臺中市,2009。
    [37]魏嘉志,以熔射塗層方式製作染料敏化太陽能電池,碩士論文,國立交通大學理學院應用科技學程,新竹市,2011。
    [38]鄭銘章,詹博傑,李世宏,張家華,熱熔射鈦基塗層之製程及磨潤特性研究,國立中央大學機械工程學系,桃園市,2010。
    [39]張帆,微弧氧化對純鋁及熱浸鍍鋁低碳鋼表面改質之影響,碩士論文,國立臺灣科技大學機械工程系,臺北市,2014。
    [40]A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Plasma electrolysis for surface engineering, Surface and Coatings Technology, 122 (1999) 73-93.
    [41]G. Che, X. Liu, J. Liu, and K. Lü, Electric Discharge Phenomena and characteristics of coating formed on the surface of AZ91D alloy during PEO process, Rare Metal Materials and Engineering, 44 (2015) 897-900.
    [42]E. Matykina, R. Arrabal, A. Mohamed, P. Skeldon, and G. E. Thompson, Plasma electrolytic oxidation of pre-anodized aluminium, Corrosion Science, 51 (2009) 2897.
    [43]王偉成,黃崧任,D. Bogale,R. Tenne,電解液中添加 WS2 無機奈米顆粒對 AZ31 鎂合金的微弧氧化陶瓷膜影響之研究,防蝕工程,31 (2017) 1-14。
    [44]陳仲宜,淺談微弧氧化技術在輕金屬表面處理之應用,金屬工業研究發展中心,ITIS產業評析專欄,2007。
    [45]邱傳聖,「輕合金表面改質新技術:微弧氧化技術簡介」,元智電子報。
    [46]R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, and G. E. Thompson, Characterization of AC PEO coatings on magnesium alloys, Surface and Coatings Technology, 203 (2009) 2207-2220.
    [47]G. Sundararajan and L. R. Krishna, Mechanism underlying the formation of thick alumina coating through the MAO coating technology, Surface and Coatings Technology, 167 (2003) 269-277.
    [48]劉榮明,郭峰,張妍,李鵬飛,內蒙古工業大學學報,26 (2007) 101-104。
    [49]P. Wang, T. Wu, X. Y. Guo, and Y. Peng, Effects of current density on the properties of micro-arc oxidation coatings formed on aluminum alloy in Silicate-Na2MoO4 electrolyte, Materials Science Forum, 814 (2015) 398-403.
    [50]Y. Liu, J. Xiu, Y. Gao, Y. Yuan, and C. Gao, Influences of additive on the formation and corrosion resistance of micro-arc oxidation ceramic coating on aluminum alloy, Physics Prodecia, 32 (2012) 107-112.
    [51]M. Molaei, Arash Fattah-Alhosseini, M. K. Keshavarz, Influence of different sodium-based additives on corrosion resistance of PEO coatings on pure Ti, Journal of Asian Ceramic Societies, 7 (2019) 247-255.
    [52]何奕融,微弧氧化製程對鈦基材之影響,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北市,2013。
    [53]薛涵覺,微弧氧化生長銳鈦礦氧化鈦薄膜於鈦金屬板之研究及其光觸媒效能之研究,碩士論文,國立臺北科技大學材料科學與工程研究所,臺北市,2010。
    [54]T. W. Clyne and S. C. Troughton, A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals. International Materials Reviews, 64 (2017) 127-162.
    [55]巫菁芳,奈米二氧化鈦覆載於銀擔體之複合物光觸媒對丙酮去除處理之研究,碩士論文,國立交通大學環境工程所,新竹市,2007。
    [56]X. Lu, C. Blawert, M. L. Zheludkevich, and K. U. Kainer, Insights into plasma electrolytic oxidation treatment with particle addition, Corrosion Science, 101 (2015) 201-207.
    [57]X. Lu, C. Blawert, Y. Huang, H. Ovri, M. L. Zheludkevich, and K. U. Kainer, Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles, Electrochimica Acta, 187 (2016) 20-33.
    [58]K. R. Shin, Y. S. Kim, G. W. Kim, H. W. Yang, Y. G. Ko, and D. H. Shin, Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation, Applied Surface Science, 347 (2015) 574-582.
    [59]M. Mu, J. Liang, X. Zhou, and Q. Xiao, One-step preparation of TiO2/MoS2 composite coating on Ti-6Al-4V alloy by plasma electrolytic oxidation and its tribological properties, Surface and Coatings Technology, 214 (2013) 124-130.
    [60]P. Wang, Y. T. Xiao, Z. H. Zhou, J. Pu, W. J. Cao, Z. Gong, and J. Hu, Effect of MgO microparticles on characteristics of microarc oxidation coatings fabricated on pure titanium, International Journal of Electrochemical Science, 14 (2019) 287-300.
    [61]S. Di, Y. Guo, H. Lv, J. Yu, and Z. Li, Microstructure and properties of rare earth CeO2-doped TiO2 nanostructured composite coatings through micro-arc oxidation, Ceramics International, 41 (2015) 6178-6186.
    [62]Y. Gao, W. Yang, D. Xu, J. Chen, and B. Jiang, Microstructure and properties of graphene oxide-doped TiO2 coating on titanium by micro arc oxidation, Metallic Materials, 33 (2018) 1524-1529.
    [63]Z. Wu, Y. Xia, G. Li, and F. Xu, Structure and mechanical properties of ceramic coatings fabricated by plasma electrolytic oxidation on aluminized steel, Applied Surface Science, 253 (2007) 8398-8403.
    [64]Y. L. Wong, Z. H. Jiang, X. R. Liu, and Z. P. Yao, Influence of treating frequency on microstructure and properties of Al2O3 coating on 304 stainless steel by cathodic plasma electrolytic deposition, Applied Surface Science, 255 (2009) 8836-8840.
    [65]陳宥任,熱浸鍍鋁中碳鋼之微弧氧化鍍膜特性分析,國立臺灣科技大學機械工程研究所碩士學位論文,臺北市,2014。
    [66]古智陽,以熱浸鍍鋁微弧氧化法製備電化學加工電極絕緣層,碩士論文,逢甲大學機械與電腦輔助工程學系機械工程碩士班,臺中市,2016。
    [67]楊春欽,磨潤學原理與應用,科技圖書,臺北市,(1986) 164-165。
    [68]溫慶三,鐵鉬碳鈦銲覆合金化塗層之抗高溫磨耗性質研究,碩士論文,國立中山大學材料科學研究所,高雄市,2002。
    [69]M. Xie, J. Cheng, C. Huo, and G. Zhao, Improving the lubricity of a bio-lubricating grease with the multilayer graphene additive, Tribology International, 150 (2020) 106386.
    [70]A. M. M. Ibrahim, W. Li, H. Xiao, Z. Zeng, Y. Ren, and M. S. Alsoufi, Energy conservation and environmental sustainability during grinding operation of Ti–6Al–4V alloys via eco-friendly oil/graphene nano additive and Minimum quantity lubrication, Tribology International, 150 (2020) 106387.
    [71]Y. X. Zhu, C. Y. Duan, H. Y. Liu, Y. F. Chen, and Y. Wang, Graphene coating for anti-corrosion and the investigation of failure mechanism, Journal of Physics D: Applied Physics. 50 (2017).
    [72]W. Liu, C. Blawert, M. L. Zheludkevich, Y. Lin, M. Talha, Y. Shi, and L. Chen, Effects of graphene nanosheets on the ceramic coatings formed on Ti-6Al-4V alloy drill pipe by plasma electrolytic oxidation, Journal of Alloys and Compounds, 789 (2019) 996-1007.
    [73]Z. Y. Li, Z. B. Cai, Y. Ding, X. J. Cui, Z. B. Yang, and M. H. Zhu, Characterization of graphene oxide/ZrO2 composite coatings deposited on zirconium alloy by micro-arc oxidation, Applied Surface Science, 506 (2020) 144928.
    [74]王帥,利用同步輻射軟X光還原氧化石墨烯,碩士論文,東海大學物理學系,臺中市,2012。
    [75]蘇清源,石墨烯氧化物之特性與應用前景,物理雙月刊,33 (2011) 163-167。
    [76]Y. Zhang, F. Chen, Y. Zhang, Z. Y. Liu, X. Wang, and C. Du, Influence of graphene oxide on the antiwear and antifriction performance of MAO coating fabricated on Mg-Li alloy, Surface and Coatings Technology, 364 (2019) 144-156.
    [77]Aidin Bordbar-Khiabani, S. Ebrahimi, and B. Yarmand, Highly corrosion protection properties of plasma electrolytic oxidized titanium using rGO nanosheets, Applied Surface Science, 486 (2019) 153-165.
    [78]高鈺涵,Ti-6Al-4V合金表面被覆碳化硼及合金元素(Ni、Cr、Si、W)之微結構與磨耗行為研究,碩士論文,國立臺灣科技大學機械工程系,台北市,2009。
    [79]蔡弘輝,電解液中添加粒子對微弧氧化陶瓷膜之影響,碩士論文,龍華科技大學工程技術研究所,桃園縣,2009。
    [80]Y. Zeng, F. Chen, Y. G. Lei, and T. J. Wei, Tribological properties of containing carbon micro arc oxidation ceramic coating on pure Mg, China Surface Engineering, 28 (2015) 84-89.
    [81]楊聰仁,腐蝕電化學分析,材料基礎實驗(二)腐蝕電化學實驗,逢甲大學,台中市。
    [82]蔡振章,黃琳意,蒿元中,黃楷庭,利用沸石薄膜改質金屬表面性質,國立高雄大學應用化學系,高雄市。

    QR CODE